
Certifying Synthetic Mathematics in Lean

Wojciech Nawrocki1 with Joseph Hua1, Mario Carneiro2, Yiming Xu3, Spencer

Woolfson4, Shuge Rong1, Sina Hazratpour5, and Steve Awodey1

1 Carnegie Mellon University 2 Chalmers University of Technology

3 LMU Munich 4 Chapman University 5 Stockholm University

February 19th, 2026 | Formalisation of maths with ITPs (seminar series) | Cambridge, UK

This material is based upon work supported by the Air Force Office of Scientific Research under MURI award FA9550-21-1-0009,

the National Science Foundation under grant number 2434614, and the European Union (ERC, Nekoka, 101083038).

Synthetic vs. analytic geometry

Proposition (Euclid, ~300BC). Given a finite line segment 𝑃𝑄, there exists

an equilateral triangle with 𝑃𝑄 as one side.

Euclid’s synthetic proof Descartes’ analytic proof

𝑃 𝑄

𝑅

Byrne's Euclid © Nicholas Rougeux CC BY-SA 4.0

𝑃 = (𝑥𝑃
𝑦𝑃

) 𝑄 = (
𝑥𝑄
𝑦𝑄

)

𝑅 = 𝑃 + (cos 60°
sin 60°

− sin 60°
cos 60°)(𝑄 − 𝑃)

‖𝑅 − 𝑃‖ = ‖𝑄 − 𝑃‖ = ‖𝑅 − 𝑄‖

https://www.c82.net/euclid/

Theory-based vs. model-based reasoning

Let 𝜑 be Euclid’s proposition as the first-order sentence

“∀(𝑃 ≠ 𝑄 : 𝖯𝗈𝗂𝗇𝗍). ∃(𝑅 : 𝖯𝗈𝗂𝗇𝗍). (…)” in the language of geometry.

Provability in the theory Truth in a model

𝕋geom. ⊢ 𝜑 ⇒
soundness and ℝ2 ⊨ 𝕋geom. ℝ2 ⊨ 𝜑

⇒
soundness and ⊨ 𝕋geom. ⊨ 𝜑

What are we really proving?

theorem one : 2 + 2 = 4 :=

 rfl
· ⊢L∃∀N− 𝗋𝖿𝗅 : 2 + 2 = 4

theorem two (n : ℕ) : n + 0 = n :=

 rfl
𝑛 : ℕ ⊢L∃∀N− 𝗋𝖿𝗅 : 𝑛 + 0 = 𝑛

theorem three : FermatLastTheorem :=

 big_proof
· ⊢L∃∀N 𝖻𝗂𝗀_𝗉𝗋𝗈𝗈𝖿 : 𝖥𝖫𝖳

theorem four (Γ₁) (Γ₂) … (Γₙ) : A :=

 t

#print axioms four

-- 'four' depends on axioms 𝕋

Γ ⊢𝕋 𝑡 : 𝐴

Types as groupoids

The set-based model of type theory is not the only one!

inductive Bool : Type

 | true | false ⇒
𝐒𝐞𝐭 ⊨ L∃∀N

⟦𝖡𝗈𝗈𝗅⟧ = {𝗍𝗋𝗎𝖾, 𝖿𝖺𝗅𝗌𝖾}

(· ⊢L∃∀N− 𝖡𝗈𝗈𝗅 : 𝖳𝗒𝗉𝖾)
⇒
𝐆𝐩𝐝 ⊨L∃AN−

⟦𝖡𝗈𝗈𝗅⟧ = t f

inductive S¹ : Type

 | base : S¹

 | loop : Path base base ⇒
𝐆𝐩𝐝 ⊨HoTT0

⟦𝑆1⟧ = b⋯ ⋯

Our approach

1. Formalize syntax and provability (Γ ⊢𝕋 𝑡 : 𝐴).

2. Reflect definitions def foo : A := t as Lean proofs of · ⊢𝕋 𝑡 : 𝐴.

3. Formalize semantics (ℳ ⊨ 𝕋).

4. Use (2.) to reason about ℳ using 𝕋.

Usage of 𝖲𝗒𝗇𝗍𝗁𝖫𝖾𝖺𝗇

@[reflect] axiom X : Type

@[reflect] axiom p : X

#print p.reflection

-- def p.reflection : ReflectedAx [X] :=

-- { tp := .el X.reflection.val,

-- wf_tp := (⋯ : [] ⊢[X] tp),

-- … }

@[reflect] def q : X := p

def M : Model := ⋯

def M_X : 𝟭_ _ ⟶ M.Ty := ⋯

def M_p : 𝟭_ _ ⟶ M.Tm := ⋯

def I : Interpretation [X,p] M :=

 ax := fun

 | ``X => M_X

 | ``p => M_p

example : I.intp q.reflection = M_p

Disclaimer: the API is oversimplified here.

Technical details

Components

1. Deep embedding of Martin-Löf type theories with 𝑈 , Π, Σ, Id types, and

base constants, e.g. HoTT (without inductive types).

2. 𝖲𝗒𝗇𝗍𝗁𝖫𝖾𝖺𝗇, an embedded proof assistant for (1.).

3. Natural model semantics (cf. CwFs) and their soundness for the syntax.

MLTTs stratified by universe level

⊢𝕋 Γ Γ ⊢ℓ
𝕋 𝐴 Γ ⊢ℓ

𝕋 𝑡 : 𝐴

Γ ⊢ℓ
𝕋 𝐴 ≡ 𝐵 Γ ⊢ℓ

𝕋 𝑡 ≡ 𝑢 : 𝐴

ℓ < ℓmax

Γ ⊢ℓ+1
𝕋 𝑈 ℓ

Γ ⊢ℓ
𝕋 𝐴 Γ.𝐴 ⊢ℓ′

𝕋 𝐵
Γ ⊢max(ℓ,ℓ′)

𝕋 Π𝐴. 𝐵

⋯ 𝕋(𝑐) = (𝐴, ℓ)
Γ ⊢ℓ

𝕋 𝑐 : 𝐴

MLTTs stratified by universe level

⊢𝕋 Γ Γ ⊢ℓ
𝕋 𝐴 Γ ⊢ℓ

𝕋 𝑡 : 𝐴

Γ ⊢ℓ
𝕋 𝐴 ≡ 𝐵 Γ ⊢ℓ

𝕋 𝑡 ≡ 𝑢 : 𝐴

inductive Expr (χ : Type u) where

 | univ l | pi A B | ...

mutual

inductive WfCtx : Theory χ → List (Expr χ) → Prop

inductive WfTp : Theory χ → List (Expr χ) → Nat → Expr χ → Prop

...

A natural model universe in [𝐂𝐭𝐱op, 𝐒𝐞𝐭]

Let Γ ⊢ 𝐴 be a type, ⊢ Γ.𝐴 the extended context, and Γ ⊢ 𝑡 : 𝐴 a term.

𝗍𝗉

⟦𝐴⟧

⟦𝑡⟧

𝖳𝗆

𝖳𝗒𝑦⟦Γ⟧

𝑦⟦Γ.𝐴⟧⌟ structure Universe where

 Tm : Psh Ctx

 Ty : Psh Ctx

 tp : Tm ⟶ Ty

 ext {Γ : Ctx} (A : y(Γ) ⟶ Ty) : Ctx

 ...

Interpretation of syntax in semantics

Following Streicher [2:Ch. III], define

⟦Γ⟧ : (Γ : 𝖫𝗂𝗌𝗍 𝖤𝗑𝗉𝗋) ⇀ 𝐂𝐭𝐱
⟦𝐴⟧𝑋 : (𝐴 : 𝖤𝗑𝗉𝗋) (𝑋 : 𝐂𝐭𝐱) ⇀ [𝐂𝐭𝐱op, 𝐒𝐞𝐭](𝑦𝑋, 𝖳𝗒)

by recursion on raw expressions. For typing contexts:

⟦·⟧ = 𝟏

⟦Γ.𝐴⟧ = 𝗅𝖾𝗍 𝑋 ← ⟦Γ⟧ 𝗂𝗇
𝗅𝖾𝗍 𝑓 ← ⟦𝐴⟧𝑋 𝗂𝗇

𝖾𝗑𝗍(𝑓)

Soundness of interpretation

Theorem.

If Γ ⊢ 𝐴, then ⟦𝐴⟧⟦Γ⟧↓.

If Γ ⊢ 𝐴 ≡ 𝐵, then ⟦𝐴⟧⟦Γ⟧ = ⟦𝐵⟧⟦Γ⟧.

Previously De Boer/Brunerie/Lumsdaine/Mörtberg [1] in Agda.

Certificate-producing proof assistant

@[reflect] axiom X : Type

@[reflect] axiom p : X
⟿

𝖲𝗒𝗇𝗍𝗁𝖫𝖾𝖺𝗇
def p.reflection : ReflectedAx [X] :=

 { tp := SynthLean.el X.reflection.val,

 wf_tp := (⋯ : [X] ∣ [] ⊢ tp),

 … }

Elaboration Translation

TypecheckingKernel✓

Vernacular

axiom p : X

{ name := `p

 type := .const `X

 : Lean.AxiomVal }

tp := .el X.reflection.val⋯ : [X] ∣ [] ⊢ tp

Open problems

Internal reasoning in the groupoid model

def isProp (A : Type) := (a b : A) → Path a b

def isSet (A : Type) := (a b : A) → isProp (Path a b)

def isGrpd (A : Type) := (a b : A) → isSet (Path a b)

def is2Grpd (A : Type) := (a b : A) → isGrpd (Path a b)

↻
❌

Prove that every type 𝐴 in the groupoid model is internally a groupoid.

axiom isGrpd_all (A : Type) : isGrpd A

Prove that set-level univalence holds in the groupoid model.

axiom setUv (A B : Type) (hA : isSet A) (hB : isSet B) : (A ≃ B) ≃ (Path A B)

Typechecking performance (HoTTLean#142)

𝗉𝗋𝗈𝖽
𝗉𝖺𝗂𝗋
𝖿𝗇
𝗂𝖽

500 750 1000 1250 1500 1750 2000
0
1
2
3
4
5
6
× 107

1000 ×

10000 ×

20000 ×

30000 × 𝗉𝖺𝗂𝗋
𝖿𝗇
𝗉𝗋𝗈𝖽
𝗂𝖽

500 750 10001250150017502000
0
2
4
6
8

10
12

× 104

https://github.com/sinhp/HoTTLean/issues/142

Defining ⟦−⟧ by recursion on raw syntax needs typing annotations, e.g.

𝖺𝗉𝗉(𝐵, 𝑓, 𝑎) instead of 𝑓 𝑎.

Γ ⊢L∃∀N 𝑓 ⇒ Π𝐴. 𝐵
Γ ⊢L∃∀N 𝑎 ⇐ 𝐴

Γ ⊢L∃∀N 𝑓 𝑎 ⇒ 𝐵[𝑎]
⟿

𝖲𝗒𝗇𝗍𝗁𝖫𝖾𝖺𝗇
Γ ⊢SL 𝑎 ⇒ 𝐴′ Γ ⊢SL 𝐵

Γ ⊢SL 𝑓 ⇐ Π𝐴′. 𝐵
Γ ⊢SL 𝖺𝗉𝗉(𝐵, 𝑓, 𝑎) ⇒ 𝐵[𝑎]

🐌 Thanks to Pesara Amarasekera for pushing the system.

“So I ran it overnight, I think 5hrs or so (I went from fifty-thousand

heartbeats to five-hundred-million) and it type checked…”

Universe polymorphism (HoTTLean#143)

Our definition of type theory does not include universe polymorphism.

@[reflect] def rfl₀ {α : Type 0} {a : α} : Path a a

@[reflect] def rfl₁ {α : Type 1} {a : α} : Path a a

Universe quantification in prenex form (what Lean does) may not require

changes to this definition.

@[reflect]

axiom.{u} X : Type u
⟿

𝖲𝗒𝗇𝗍𝗁𝖫𝖾𝖺𝗇 def X.reflection :

 (u : ℕ) → ReflectedAx [] := ..
?

https://github.com/sinhp/HoTTLean/issues/143

Mutual induction (HoTTLean#155)

Mutual induction is everywhere in PL theory, yet support in Lean is tragic.

theorem le_univMax_all :

 (∀ {Γ}, WfCtx E Γ → ∀ {A i l}, Lookup Γ i A l → l ≤ univMax) ∧

 (∀ {Γ l A}, E ∣ Γ ⊢[l] A → l ≤ univMax) ∧

 (∀ {Γ l A B}, E ∣ Γ ⊢[l] A ≡ B → l ≤ univMax) ∧

 (∀ {Γ l A t}, E ∣ Γ ⊢[l] t : A → l ≤ univMax) ∧

 (∀ {Γ l A t u}, E ∣ Γ ⊢[l] t ≡ u : A → l ≤ univMax)

Early work by Jonathan Chan: github.com/ionathanch/MutualInduction

https://github.com/sinhp/HoTTLean/issues/155
https://github.com/ionathanch/MutualInduction

Notions of model

Which approach to semantics enables efficient model constructions?

• Natural models in [𝐂𝐭𝐱op, 𝐒𝐞𝐭]?
• Elementary models in 𝐂𝐭𝐱?

• Π-clans as an abstract setting for polynomial functors?

Want efficient constructions of ➰ groupoid model and eventually 🔺

simplicial set model.

See

• Awodey & Hua. Path types in algebraic type theory.

• Hua & Xu. Polynomial functors in π-clans for the semantics of type theory.

https://arxiv.org/abs/2601.06567v1
https://arxiv.org/abs/2602.05689
https://arxiv.org/abs/2602.05689
https://arxiv.org/abs/2602.05689

github.com/sinhp/HoTTLean

https://github.com/sinhp/HoTTLean/

Bibliography

[1] Menno de Boer. 2020. A Proof and Formalization of the Initiality

Conjecture of Dependent Type Theory. Licentiate Thesis. Department of

Mathematics, Stockholm University.

[2] Thomas Streicher. 1991. Semantics of type theory: correctness,

completeness, and independence results. Birkhäuser Boston Inc., USA.

	Synthetic vs. analytic geometry
	Theory-based vs. model-based reasoning
	What are we really proving?
	Types as groupoids
	Our approach
	Usage of SynthLean
	Components
	MLTTs stratified by universe level
	A natural model universe in [Ctxop, Set]
	Interpretation of syntax in semantics
	Soundness of interpretation
	Certificate-producing proof assistant
	Internal reasoning in the groupoid model
	Typechecking performance (HoTTLean#142)
	Universe polymorphism (HoTTLean#143)
	Mutual induction (HoTTLean#155)
	Notions of model
	Bibliography
	Bibliography

