Certifying Synthetic Mathematics in Lean

Wojciech Nawrocki' with Joseph Hua', Mario Carneiro?, Yiming Xu®, Spencer
Woolfson*, Shuge Rong’, Sina Hazratpour®, and Steve Awodey"

' Carnegie Mellon University ? Chalmers University of Technology
> LMU Munich * Chapman University > Stockholm University

February 19th, 2026 | Formalisation of maths with ITPs (seminar series) | Cambridge, UK

Synthetic vs. analytic geometry

Proposition (Euclid, ~300BC). Given a finite line segment PQ, there exists
an equilateral triangle with PQ as one side.

Euclid’s synthetic proof Descartes’ analytic proof

X X0
P="" =
(YP> ? (Y Q)
cos 60° —sin 60°
e =8 (sin 60° cos 60° >(Q —P)

IR = P|| = [|Q = P|| = [R = Q]

https://www.c82.net/euclid/

Theory-based vs. model-based reasoning

Let ¢ be Euclid’s proposition as the first-order sentence
“V(P # Q : Point). A(R : Point). (...)” in the language of geometry.

Provability in the theory Truth in a model

2
-ﬂ_geom, = 0 soundness and R“ F Tgeor?_ [RZ = @

7

soundness and W2 T oeom. Y e @

7

What are we really proving?

theorem one : 2 + 2 = 4 :=

rfl . I_LEIVN— fl:2+4+2=4

theorem two (n : N) : n + 8 =n :=

rfl n:NFLaVN_rﬂZn+O=I’l

theorem three : FermatlLastTheorem :=

big_proof - Fyqyn big_proof : FLT

theorem four (1) (F2) .. (Fn) : A :=
t

#print axioms four

-- 'four' depends on axioms T

FI_‘H't:A

Types as groupoids

The set-based model of type theory is not the only one!

inductive Bool : Type Set E LIVN
| true | false > [[Bool]] = {true, false}
(- F{gyn- Bool : Type) Gpd ELIAN-
> [Bool]= ® @

inductive ST : Type

| base : S Gpd EHoTT,
| loop : Path base base N [[Sl]] — ..

Our approach

1. Formalize syntax and provability (I' - ¢ : A).
2. Reflect definitions def foo : A := t as Lean proofs of - -7 ¢ : A.
3. Formalize semantics (M E T).

4. Use (2.) to reason about M using T.

Usage of SynthlLean

@[reflect] axiom X : Type def M : Model := -
@[reflect] axiom p : X
def M_X : 1. _ —» M.Ty := -

fprint p.reflection def M_.p : 1_ _ - M. Tm := -
-- def p.reflection : ReflectedAx [X] :=
- { tp := .el X.reflection.val, def I : Interpretation [X,p] M :=
—- wf_tp := (=~ : [] FIX] tp), ax := fun
—- .} | *YX => M_X
| “Tp => M_p

@[reflect] def g : X :=p
example : I.intp g.reflection = M_p

Technical details

1. Deep embedding of Martin-Lof type theories with U, II, ¥, Id types, and
base constants, e.g. HoT T (without inductive types).

2. SynthLean, an embedded proof assistant for (1.).

3. Natural model semantics (cf. CwFs) and their soundness for the syntax.

MLTTs stratified by

FrT| |THFA| |THTt:A

THFyA=B| |[THSt=u:A

6<l ..
41 o,

r24 TAFSB o T(0)=(A¢0)

r " na. B TS c: A

MLTTs stratified by

| |THSA| |THYt:A

THFyA=B| |[THSt=u:A

inductive Expr (yx : Type u) where
| univ 1l | pi AB | ...

mutual
inductive WfCtx : Theory ¥ - List (Expr ¥) - Prop
inductive WfTp : Theory y - List (Expr) - Nat = Expr ¥ - Prop

A in |Ctx°P, Set]

Let I' = A be a type, - I''A the extended context,and I' - ¢ : A a term.

yIT.A] > Tm structure Universe where
- Tm : Psh Ctx
]l < tp Ty : Psh Ctx
L 4 tp o Tm— Ty
YT > Ty ext {I : Ctx} (A : y(I') = Ty) : Ctx

[A]

Interpretation of syntax in semantics

Following Streicher [2:Ch. III], define

IT] : (T : List Expr) — Ctx
LAl : (A : Expr) (X : Ctx) — [CtxP, Set|(yX, Ty)

by recursion on raw expressions. For typing contexts:
[T A =let X « [[T']] in
[-]=1 let f < [[A]l, in
ext(f)

Soundness of interpretation

Theorem.
IfI' - A, then [[A]][[F]]l.
IfI"' - A = B, then [[A]][[F]] = [[B]][[F]].

Previously De Boer/Brunerie/Lumsdaine/Mortberg [1] in Agda.

Certificate-producing proof assistant

/

def p.reflection : ReflectedAx [X] :=
@[reflect] axiom X : Type SynthLean { tp := SynthLean.el X.reflection.val,

@[reflect] axiom p : X e wf_tp := (=~ ¢ [X] 1 []F tp),
. -})
{ name := 'p
Vernacular bype: 3= .c?onst X
. : Lean.AxiomVal }
axiom p : X . \ .
>[Elaboration | > Translation
w [X] 1 []F tp tp := .el X.reflection.val

V< [Kernel]< Typechecking

Open problems

Internal reasoning in the groupoid model

def isProp (A : Type) := (a b : A) » Path a b

def isSet (A : Type) := (a b : A) » isProp (Path a b)
def isGrpd (A : Type) := (a b : A) » isSet (Path a b)
def is2Grpd (A : Type) := (a b : A) » isGrpd (Path a b)

A : »

o—o >

Prove that every type A in the groupoid model is internally a groupoid.

axiom isGrpd_all (A : Type) : isGrpd A
Prove that set-level univalence holds in the groupoid model.

axiom setUv (A B : Type) (hA : isSet A) (hB : isSet B) : (A = B) = (Path A B)

Typechecking performance (HoTTLean#142)

S H N W B U1 O

500 750 100012501500 17502000 500 750 10001250150017502000

https://github.com/sinhp/HoTTLean/issues/142

Defining || —]] by recursion on raw syntax needs typing annotations, e.g.

app(B, f,a) instead of f a.

p
I'bian f = TIA.B Tkqa=>A ThHyB
SynthLean = — , =
Fl_LHVNa¢A MY FI_SLf¢H14B
I' i3y f a= Bld] I kg app(B, f,a) = B|a]
-

@ Thanks to Pesara Amarasekera for pushing the system.

“So I ran it overnight, I think 5hrs or so (I went from fifty-thousand
heartbeats to five-hundred-million) and it type checked...”

Universe polymorphism (HoT TLean#143)

Our definition of type theory does not include universe polymorphism.

O[reflect] def rflg {o : Type 8} {a : a} : Path a a
@[reflect] def rfly {o : Type 1} {a : a} : Path a a

Universe quantification in prenex form (what Lean does) may not require
changes to this definition.

4)

@[reflect] SynthLean def X.reflection :

o
axiom.{u} X : Type u e (u : N) » ReflectedAx [] := .. '

https://github.com/sinhp/HoTTLean/issues/143

Mutual induction (HoTTLean#155)

Mutual induction is everywhere in PL theory, yet support in Lean is tragic.

theorem le_univMax_all :
(V {I'}, WFCtx ET » V {A i 1}, Lookup ' i A 1 » 1 < univMax) A
(VY {T' 1 A}, E 1 T F[1] A » 1 < univMax) A
(V{r1AB}, EI T HI1]A=B->1 < univMax) A
(V{Ir 1At} E1THI1]t:A->1<univMax) A
(W{fr1Atu}, EITTHI1I] t=u:A->1 < univMax)

Early work by Jonathan Chan: github.com/ionathanch/Mutuallnduction

https://github.com/sinhp/HoTTLean/issues/155
https://github.com/ionathanch/MutualInduction

Notions of model

Which approach to semantics enables efficient model constructions?

« Natural models in [Ctx°P, Set]?
« Elementary models in Ctx?
e Il-clans as an abstract setting for polynomial functors?

Want efficient constructions of @ groupoid model and eventually A
simplicial set model.

See
« Awodey & Hua. Path types in algebraic type theory.
« Hua & Xu. Polynomial functors in n-clans for the semantics of type theory.

https://arxiv.org/abs/2601.06567v1
https://arxiv.org/abs/2602.05689
https://arxiv.org/abs/2602.05689
https://arxiv.org/abs/2602.05689

github.com/sinhp/HoT TLean

https://github.com/sinhp/HoTTLean/

Bibliography

[1] Menno de Boer. 2020. A Proof and Formalization of the Initiality
Conjecture of Dependent Type Theory. Licentiate Thesis. Department of
Mathematics, Stockholm University:.

[2] Thomas Streicher. 1991. Semantics of type theory: correctness,
completeness, and independence results. Birkhduser Boston Inc., USA.

	Synthetic vs. analytic geometry
	Theory-based vs. model-based reasoning
	What are we really proving?
	Types as groupoids
	Our approach
	Usage of SynthLean
	Components
	MLTTs stratified by universe level
	A natural model universe in [Ctxop, Set]
	Interpretation of syntax in semantics
	Soundness of interpretation
	Certificate-producing proof assistant
	Internal reasoning in the groupoid model
	Typechecking performance (HoTTLean#142)
	Universe polymorphism (HoTTLean#143)
	Mutual induction (HoTTLean#155)
	Notions of model
	Bibliography
	Bibliography

