
A Certifying Proof Assistant

for Synthetic Mathematics in Lean

Wojciech Nawrocki1 with Joseph Hua1, Mario Carneiro2, Yiming Xu3, Spencer

Woolfson4, Shuge Rong1, Sina Hazratpour5, and Steve Awodey1

1 Carnegie Mellon University 2 Chalmers University of Technology

3 LMU Munich 4 Chapman University 5 Stockholm University

January 12th | CPP 2026 | Rennes, France

This material is based upon work supported by the Air Force Office of Scientific Research under MURI award FA9550-21-1-0009, the

National Science Foundation under grant number 2434614, and the European Union (ERC, Nekoka, 101083038).

Synthetic vs. analytic mathematics

Axiomatize an area of inquiry in

terms of irreducible primitives.

vs. Break primitives apart in terms of

finer entities.

Synthetic Euclidean geom. (theory) Analytic Cartesian geom. (model)

𝑃 𝑄

𝑅

Byrne's Euclid © Nicholas Rougeux CC BY-SA 4.0

𝑃 = (𝑥𝑃𝑦𝑃
) 𝑄 = (

𝑥𝑄
𝑦𝑄

)

𝑅 = 𝑃 + (cos 60°sin 60°
− sin 60°
cos 60°)(𝑄 − 𝑃)

https://www.c82.net/euclid/

Synthetic homotopy theory

Modern synthetic mathematics uses dependent types and categories.

Homotopy type theory (HoTT) is an axiomatization of homotopy theory.

Types can be interpreted as (∞-)groupoids (i.e., categories with iso.s only).

data Bool : Type where

 true false : Bool
t f

data S¹ : Type where

 base : S¹

 loop : base ≡ base
b ≅ (ℤ,+)⋯ ⋯

Synthetic algebraic geometry

Blechschmidt [2] freely mixes theory-based and model-based reasoning.

Our goal: formally verified theory-model connection.

Our contributions

1. Deep embedding of Martin-Löf type theories with 𝑈 , Π, Σ, Id types, and

base constants, e.g. HoTT (without inductive types).

2. Natural model semantics (cf. CwFs) and their soundness for the syntax.

3. 𝖲𝗒𝗇𝗍𝗁𝖫𝖾𝖺𝗇, an embedded proof assistant for 1. and 2.

Usage of 𝖲𝗒𝗇𝗍𝗁𝖫𝖾𝖺𝗇

declare_theory pointt

pointt axiom X : Type

pointt axiom p : X

pointt #print p

-- axiom p : X

#print p

-- def p : CheckedAx [X] :=

-- { tp := .el X.val,

-- wf_tp := (⋯ : [X] ∣ [] ⊢[0] tp),

-- … }

def ℳ︀ : Universe := ⋯

def ℳ︀_X : 𝟭_ _ ⟶ ℳ︀.Ty := ⋯

def ℳ_p : 𝟭_ _ ⟶ ℳ︀.Tm := ⋯

def I : Interpretation ℳ︀ where

 ax := fun

 | ``X => ℳ︀_X

 | ``p => ℳ_p

pointt def q : X := p

example : I.interpDef q = ℳ_p

Disclaimer: the API is oversimplified here.

Syntax

MLTTs stratified by universe level

𝕋 ⊢ Γ 𝕋 ∣ Γ ⊢ℓ 𝐴 𝕋 ∣ Γ ⊢ℓ 𝑡 : 𝐴

𝕋 ∣ Γ ⊢ℓ 𝐴 ≡ 𝐵 𝕋 ∣ Γ ⊢ℓ 𝑡 ≡ 𝑢 : 𝐴

ℓ < ℓmax

𝕋 ∣ Γ ⊢ℓ+1 𝑈ℓ

𝕋 ∣ Γ ⊢ℓ+1 𝑎 : 𝑈ℓ

𝕋 ∣ Γ ⊢ℓ 𝖤𝗅 𝑎

𝕋 ∣ Γ ⊢ℓ 𝐴 𝕋 ∣ Γ.𝐴ℓ ⊢ℓ′ 𝐵
𝕋 ∣ Γ ⊢max(ℓ,ℓ′) Πℓ,ℓ′𝐴. 𝐵

⋯ (𝑐 :ℓ 𝑇) ∈ 𝕋
𝕋 ∣ Γ ⊢ℓ 𝑐 : 𝑇

MLTTs stratified by universe level

𝕋 ⊢ Γ 𝕋 ∣ Γ ⊢ℓ 𝐴 𝕋 ∣ Γ ⊢ℓ 𝑡 : 𝐴

𝕋 ∣ Γ ⊢ℓ 𝐴 ≡ 𝐵 𝕋 ∣ Γ ⊢ℓ 𝑡 ≡ 𝑢 : 𝐴

mutual

inductive WfCtx : Theory χ → Ctx χ → Prop

inductive WfTp : Theory χ → Ctx χ → Nat → Expr χ → Prop

...

Basic syntactic metatheory

Theorem (Admissible substitution). If Γ ⊢ℓ 𝒥 and Δ ⊢ 𝜎 : Γ, then Δ ⊢ℓ 𝒥[𝜎].

Theorem (Inversion for ≡). If Γ ⊢ℓ 𝐴 ≡ 𝐵, then Γ ⊢ℓ 𝐴 and Γ ⊢ℓ 𝐵.

Axiom (Injectivity of Π types). If Γ ⊢𝓀 Πℓ0,ℓ′0𝐴. 𝐵 ≡ Πℓ1,ℓ′1𝐴
′. 𝐵′,

then Γ ⊢ℓ0 𝐴 ≡ 𝐴′ and Γ.𝐴 ⊢ℓ′0 𝐵 ≡ 𝐵′.

Semantics

A natural model universe in [𝐂𝐭𝐱op, 𝐒𝐞𝐭]

Let Γ ⊢0 𝐴 be a type, ⊢ Γ.𝐴 the extended context, and Γ ⊢0 𝑡 : 𝐴 a term.

𝗍𝗉0

⟦𝐴⟧

⟦𝑡⟧

𝖳𝗆0

𝖳𝗒0𝑦⟦Γ⟧

𝑦⟦Γ.𝐴⟧ ⌟ structure Universe where

 Tm : Psh Ctx

 Ty : Psh Ctx

 tp : Tm ⟶ Ty

 ext {Γ : Ctx} (A : y(Γ) ⟶ Ty) : Ctx

 ...

Soundness of interpretation

Following Streicher [7:Ch. III], define

⟦Γ⟧ : (Γ : 𝖫𝗂𝗌𝗍 𝖤𝗑𝗉𝗋) ⇀ 𝐂𝐭𝐱
⟦𝐴⟧𝑋,ℓ : (𝐴 : 𝖤𝗑𝗉𝗋) (𝑋 : 𝐂𝐭𝐱) (ℓ : ℕ) ⇀ [𝐂𝐭𝐱op, 𝐒𝐞𝐭](𝑦𝑋, 𝖳𝗒ℓ)

Theorem (Soundness).

If Γ ⊢ℓ 𝐴, then ⟦𝐴⟧⟦Γ⟧,ℓ↓

If Γ ⊢ℓ 𝐴 ≡ 𝐵, then ⟦𝐴⟧⟦Γ⟧,ℓ = ⟦𝐵⟧⟦Γ⟧,ℓ

Previously De Boer/Brunerie/Lumsdaine/Mörtberg [3] in Agda.

Proof assistant

Certificate-producing proof assistant

declare_theory pointt

pointt axiom X : Type

pointt axiom p : X

⟿
𝖲𝗒𝗇𝗍𝗁𝖫𝖾𝖺𝗇

def p : CheckedAx [X] :=

 { tp := SynthLean.el X.val,

 wf_tp := (⋯ : [X] ∣ [] ⊢[0] tp),

 … }

Elaboration Translation

TypecheckingKernel✓

Vernacular
axiom p : X

{ name := `p

 type := .const `X

 : Lean.AxiomVal }

tp := SynthLean.el X.val⋯ : [X] ∣ [] ⊢[0] tp

Typechecking via normalization by evaluation (NbE)

partial def evalTp (env : Q(List NbE.Val)) (T : Q(SynthLean.Expr)) :

 Lean.MetaM (

 -- Return value:

 (vT : Q(NbE.Val)) ×

 -- Postcondition certificate:

 Q(∀ {Γ Δ σ l},

 (Γ ⊢[l] $T) → (Δ ⊩ $env ≈ σ : Γ) → (Δ ⊩[l] $vT ≈ $T.subst σ)))

🛑 No termination encoding (e.g. Bove-Capretta [4]) needed.

🏎️ Optimizations: 𝒪︀(0) weakening via De Bruijn levels,

defunctionalized closures à la Abel [1], certificate subterm sharing.

Other aspects of the formalization

✍️ Dependent rewriting tactic rw!, j.w.w. Aaron Liu, added to mathlib.

⏳ Performance issues formalizing “obvious” naturality laws (see discussion).

⚡ Deeply embedded judgmental equalities without QIITs ∼ setoid hell.

But QIITs ∼ quotient hell [5, 6]?

🪜 NbE certificates reminiscent of A. Kolomatskaia’s Stepping by Evaluation.

🦜 Relying on library of polynomial functors. S. Hazratpour & E. Riehl. Poly.

https://leanprover-community.github.io/mathlib4_docs/Mathlib/Tactic/DepRewrite.html
https://leanprover.zulipchat.com/#narrow/channel/116395-maths/topic/Natural.20equivalences.20and.20kernel.20performance/
https://github.com/FrozenWinters/SbE
https://github.com/sinhp/poly

github.com/sinhp/HoTTLean

https://github.com/sinhp/HoTTLean/

Bibliography

[1] Andreas Abel. 2013. Normalization by evaluation: Dependent types and

impredicativity. Doctoral dissertation.

[2] Ingo Blechschmidt. 2018. Using the Internal Language of Toposes in

Algebraic Geometry. Doctoral dissertation.

[3] Menno de Boer. 2020. A Proof and Formalization of the Initiality

Conjecture of Dependent Type Theory. Licentiate Thesis. Department of

Mathematics, Stockholm University.

[4] Ana Bove and Venanzio Capretta. 2005. Modelling general recursion in

type theory. Mathematical. Structures in Comp. Sci. 15, 4 (August 2005),

671–708. https://doi.org/10.1017/S0960129505004822

https://doi.org/10.1017/S0960129505004822

[5] Liang-Ting Chen, Fredrik Nordvall Forsberg, and Tzu-Chun Tsai. 2026.

Can We Formalise Type Theory Intrinsically without Any Compromise?

A Case Study in Cubical Agda. In Proceedings of the 15th ACM

SIGPLAN International Conference on Certified Programs and Proofs

(CPP '26), 2026. Association for Computing Machinery, Rennes, France,

201–215. https://doi.org/10.1145/3779031.3779090

[6] Ambrus Kaposi and Loïc Pujet. 2025. Type Theory in Type Theory using

a Strictified Syntax. Proc. ACM Program. Lang. 9, ICFP (August 2025).

https://doi.org/10.1145/3747535

[7] Thomas Streicher. 1991. Semantics of type theory: correctness,

completeness, and independence results. Birkhäuser Boston Inc., USA.

https://doi.org/10.1145/3779031.3779090
https://doi.org/10.1145/3747535

	Synthetic vs. analytic mathematics
	Synthetic homotopy theory
	Synthetic algebraic geometry
	Our contributions
	Usage of SynthLean
	MLTTs stratified by universe level
	Basic syntactic metatheory
	A natural model universe in [Ctxop, Set]
	Soundness of interpretation
	Certificate-producing proof assistant
	Typechecking via normalization by evaluation (NbE)
	Other aspects of the formalization
	Bibliography
	Bibliography

