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Synthetic vs. analytic mathematics

Axiomatize an area of inquiry in 

terms of irreducible primitives.

vs. Break primitives apart in terms of 

finer entities.

Synthetic Euclidean geom. (theory) Analytic Cartesian geom. (model)
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Synthetic homotopy theory

Modern synthetic mathematics uses dependent types and categories.

Homotopy type theory (HoTT) is an axiomatization of homotopy theory.

Types can be interpreted as (∞-)groupoids (i.e., categories with iso.s only).

data Bool : Type where

  true false : Bool
t f

data S¹ : Type where

  base : S¹

  loop : base ≡ base
b ≅ (ℤ,+)⋯ ⋯



Synthetic algebraic geometry

Blechschmidt [2] freely mixes theory-based and model-based reasoning.

Our goal: formally verified theory-model connection.



Our contributions

1. Deep embedding of Martin-Löf type theories with 𝑈 , Π, Σ, Id types, and 

base constants, e.g. HoTT (without inductive types).

2. Natural model semantics (cf. CwFs) and their soundness for the syntax.

3. 𝖲𝗒𝗇𝗍𝗁𝖫𝖾𝖺𝗇, an embedded proof assistant for 1. and 2.



Usage of 𝖲𝗒𝗇𝗍𝗁𝖫𝖾𝖺𝗇

declare_theory pointt

pointt axiom X : Type

pointt axiom p : X

pointt #print p

-- axiom p : X

#print p

-- def p : CheckedAx [X] :=

--   { tp := .el X.val,

--     wf_tp := (⋯ : [X] ∣ [] ⊢[0] tp),

--     … }

def ℳ︀ : Universe := ⋯

def ℳ︀_X : 𝟭_ _ ⟶ ℳ︀.Ty := ⋯

def ℳ_p : 𝟭_ _ ⟶ ℳ︀.Tm := ⋯

def I : Interpretation ℳ︀ where

  ax := fun

    | ``X => ℳ︀_X

    | ``p => ℳ_p 

pointt def q : X := p

example : I.interpDef q = ℳ_p

Disclaimer: the API is oversimplified here.



Syntax



MLTTs stratified by universe level

𝕋 ⊢ Γ 𝕋 ∣ Γ ⊢ℓ 𝐴 𝕋 ∣ Γ ⊢ℓ 𝑡 : 𝐴

𝕋 ∣ Γ ⊢ℓ 𝐴 ≡ 𝐵 𝕋 ∣ Γ ⊢ℓ 𝑡 ≡ 𝑢 : 𝐴

ℓ < ℓmax

𝕋 ∣ Γ ⊢ℓ+1 𝑈ℓ
 

𝕋 ∣ Γ ⊢ℓ+1 𝑎 : 𝑈ℓ

𝕋 ∣ Γ ⊢ℓ 𝖤𝗅 𝑎

𝕋 ∣ Γ ⊢ℓ 𝐴 𝕋 ∣ Γ.𝐴ℓ ⊢ℓ′ 𝐵
𝕋 ∣ Γ ⊢max(ℓ,ℓ′) Πℓ,ℓ′𝐴. 𝐵

 
⋯ (𝑐 :ℓ 𝑇) ∈ 𝕋
𝕋 ∣ Γ ⊢ℓ 𝑐 : 𝑇



MLTTs stratified by universe level

𝕋 ⊢ Γ 𝕋 ∣ Γ ⊢ℓ 𝐴 𝕋 ∣ Γ ⊢ℓ 𝑡 : 𝐴

𝕋 ∣ Γ ⊢ℓ 𝐴 ≡ 𝐵 𝕋 ∣ Γ ⊢ℓ 𝑡 ≡ 𝑢 : 𝐴

mutual

inductive WfCtx : Theory χ → Ctx χ → Prop

inductive WfTp : Theory χ → Ctx χ → Nat → Expr χ → Prop

...



Basic syntactic metatheory

Theorem (Admissible substitution). If Γ ⊢ℓ 𝒥 and Δ ⊢ 𝜎 : Γ, then Δ ⊢ℓ 𝒥[𝜎].

Theorem (Inversion for ≡). If Γ ⊢ℓ 𝐴 ≡ 𝐵, then Γ ⊢ℓ 𝐴 and Γ ⊢ℓ 𝐵.

Axiom (Injectivity of Π types). If Γ ⊢𝓀 Πℓ0,ℓ′0𝐴. 𝐵 ≡ Πℓ1,ℓ′1𝐴
′. 𝐵′,

then Γ ⊢ℓ0 𝐴 ≡ 𝐴′ and Γ.𝐴 ⊢ℓ′0 𝐵 ≡ 𝐵′.



Semantics



A natural model universe in [𝐂𝐭𝐱op, 𝐒𝐞𝐭]

Let Γ ⊢0 𝐴 be a type, ⊢ Γ.𝐴 the extended context, and Γ ⊢0 𝑡 : 𝐴 a term.

𝗍𝗉0

⟦𝐴⟧

⟦𝑡⟧

𝖳𝗆0

𝖳𝗒0𝑦⟦Γ⟧

𝑦⟦Γ.𝐴⟧ ⌟ structure Universe where

  Tm : Psh Ctx

  Ty : Psh Ctx

  tp : Tm ⟶ Ty

  ext {Γ : Ctx} (A : y(Γ) ⟶ Ty) : Ctx

  ...



Soundness of interpretation

Following Streicher [7:Ch. III], define

⟦Γ⟧ : (Γ : 𝖫𝗂𝗌𝗍 𝖤𝗑𝗉𝗋) ⇀ 𝐂𝐭𝐱
⟦𝐴⟧𝑋,ℓ : (𝐴 : 𝖤𝗑𝗉𝗋) (𝑋 : 𝐂𝐭𝐱) (ℓ : ℕ) ⇀ [𝐂𝐭𝐱op, 𝐒𝐞𝐭](𝑦𝑋, 𝖳𝗒ℓ)

Theorem (Soundness).

If Γ ⊢ℓ 𝐴, then ⟦𝐴⟧⟦Γ⟧,ℓ↓

If Γ ⊢ℓ 𝐴 ≡ 𝐵, then ⟦𝐴⟧⟦Γ⟧,ℓ = ⟦𝐵⟧⟦Γ⟧,ℓ

Previously De Boer/Brunerie/Lumsdaine/Mörtberg [3] in Agda.



Proof assistant



Certificate-producing proof assistant

declare_theory pointt

pointt axiom X : Type

pointt axiom p : X

⟿
𝖲𝗒𝗇𝗍𝗁𝖫𝖾𝖺𝗇

def p : CheckedAx [X] :=

  { tp := SynthLean.el X.val,

    wf_tp := (⋯ : [X] ∣ [] ⊢[0] tp),

    … }

Elaboration Translation

TypecheckingKernel✓

Vernacular
axiom p : X

{ name := `p

  type := .const `X

  : Lean.AxiomVal }

tp := SynthLean.el X.val⋯ : [X] ∣ [] ⊢[0] tp



Typechecking via normalization by evaluation (NbE)

partial def evalTp (env : Q(List NbE.Val)) (T : Q(SynthLean.Expr)) :

  Lean.MetaM (

    -- Return value:

    (vT : Q(NbE.Val)) ×

      -- Postcondition certificate:

      Q(∀ {Γ Δ σ l},

        (Γ ⊢[l] $T) → (Δ ⊩ $env ≈ σ : Γ) → (Δ ⊩[l] $vT ≈ $T.subst σ)))

🛑 No termination encoding (e.g. Bove-Capretta [4]) needed.

🏎️ Optimizations: 𝒪︀(0) weakening via De Bruijn levels,

defunctionalized closures à la Abel [1], certificate subterm sharing.



Other aspects of the formalization

✍️ Dependent rewriting tactic rw!, j.w.w. Aaron Liu, added to mathlib.

⏳ Performance issues formalizing “obvious” naturality laws (see discussion).

⚡ Deeply embedded judgmental equalities without QIITs ∼ setoid hell.

But QIITs ∼ quotient hell [5, 6]?

🪜 NbE certificates reminiscent of A. Kolomatskaia’s Stepping by Evaluation.

🦜 Relying on library of polynomial functors. S. Hazratpour & E. Riehl. Poly.

https://leanprover-community.github.io/mathlib4_docs/Mathlib/Tactic/DepRewrite.html
https://leanprover.zulipchat.com/#narrow/channel/116395-maths/topic/Natural.20equivalences.20and.20kernel.20performance/
https://github.com/FrozenWinters/SbE
https://github.com/sinhp/poly


github.com/sinhp/HoTTLean

https://github.com/sinhp/HoTTLean/
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