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Empty k-gons

Fix a set S of points on the plane, no three collinear. A k-hole is a convex k-gon
with no point of S in its interior.
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5 points must contain a 4-hole

Theorem (Klein 1932). Every set of 5 points in the plane contains a 4-hole.
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9 points with no 5-holes

3/ 22



9 points with no 5-holes

3/ 22



9 points with no 5-holes

5-hole x
convex >-gon v/

3/ 22



9 points with no 5-holes

convex >-gon X

3/ 22



The Happy Ending Problem

g(k) = least n s.t. any set of n points must contain a convex k-gon

h(k) = least n s.t. any set of n points must contain a k-hole
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Known tight bounds

h (3) =3 (trivial) o (3) =5 (trivial)

h (4) = 5 (Klein 1932) g (4) = 5 (Klein 1932)

h (5) = 10 (Harborth 1978) 2 (5) =" (Makai 1930s)

h (6) = 30 (Overmars 2002; Heule and Scheucher o (6) — 17 (Szekeres and Peters 2006)
2024)

We formally verified all the above in Lean.
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SAT-solving mathematics

Reduction. Show that a mathematical theorem is true if a propositional
formula ¢ is unsatisfiable.

Solving. Show that ¢ is indeed unsatisfiable using a SAT solver.
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Reduction from geometry to SAT

1. Discretize from continuous coordinates in R? to boolean variables.
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Discretization with triple-orientations

o
\ a(p,r,q) =1 (clockwise)
-@ a(p,s,t) =0 (collinear)
o(r,s,q) = —1 (counter-clockwise)
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Discretization with triple-orientations

o
\ a(p,r,q) =1 (clockwise)
-@ a(p,s,t) =0 (collinear)
o(r,s,q) = —1 (counter-clockwise)

3 k-hole < a propositional formula over o(a, b, ¢) is satisfiable
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Reduction from geometry to SAT

2. Points can be put in canonical form without removing k-holes.

symmetry breaking {l : List Point}
L.length - PointsInGenPos |l -

3 =
d w : CanonicalPoints, |l <0 w.points
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Symmetry breaking

Lemma. WLOG we can assume that the points (pq, ..., p,,) are in canonical form,
meaning that they satisfy the following properties:

» (x-order) The points are sorted with respect to their z-coordinates,
ie., (p;) < (p;) foralll <i<j<mn.
r

» (CCW-order) All orientations a(pl, Dy, pj), with 1 <17 < 5 < n, are
counterclockwise.

» (Lex order) The first half of list of adj. orientations is lex-below the second half:
[0(p[%—|+1ap[%-‘+27p[%—|+3)7 socy O-(pn—van—lapn)] >~
[a(p@_l,p[%} ,p[g1+1), 005 U(p27p37p4)]
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Symmetry breaking

by

Starting set of points.

11/ 22



Symmetry breaking

by
(3
(6
Rotation ensures distinct z.
(7
4 | >
2 oY
L o 6
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Symmetry breaking

A
0 0

Translate leftmost point to (0, 0).
Ensures nonnegative . (4)
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Symmetry breaking

12/
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Symmetry breaking

@
by

Bring point at oo back.
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Symmetry breaking

@
Ay

Relabel in order of increasing x.
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Reduction from geometry to SAT

3. n points in canonical form with no 6-holes induce a propositional
assignment that satisfies ¢,, .

satisfies hexagonEncoding {w : CanonicalPoints}
—~oHasEmptyKGon 6 w -» w.toPropAssn F Geo.hexagonCNF w.len

4. But ¢4 is unsatisfiable.

unsat 6hole cnf : (Geo.hexagonCNF 30).isUnsat
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Running the SAT solver

CNF formula produced directly from executable Lean definition.
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Running the SAT solver

CNF formula produced directly from executable Lean definition.

To verify h(6) < 30:

» CNF with 65 092 variables and 436 523 clauses

» partitioned into 312 418 subproblems

» each subproblem solved by CaDiCalL 1.9.5

» unsatisfiability proofs checked on-the-fly by cake 1lpr

» 25876.5 CPU hours on Bridges 2 cluster of Pittsburgh Supercomputing Center
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To prove n < h(k), find a set of n points with no k-holes.
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To prove n < h(k), find a set of n points with no k-holes.
Naive checker algorithm is O(n***log k) time.

We verified an O (n?) solution
from Dobkin et al. (1990).
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Hole-finding algorithm
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Hole-finding algorithm: verification

If  =1¢+11j clearly is in VG.
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Hole-finding algorithm: verification

If  =1¢+11j clearly is in VG.

expands to

of proceed loop

{i j : Fin n} (ij : Visible p pts 1 j) {Q : Queues n j} {Q j : BelowList n j} {Q i} (ha)
{IH} (hIH : V a (ha : a < 1), Visible p pts a j -» ProceedIH p pts (ha.trans ij.1) (IH a ha))
(Hj : Queues.OrderedTail p pts lo j ( k h =>Q.q[k.1]'(Q.sz » h)) Q j.1)
(ord : Queues.Ordered p pts lo i ( kK h => Q.q[k.1]1'(Q.sz » h.trans ij.1)) Q i)
(g wf : Q.graph.WF (VisiblelLT p pts lo j))
{@' Q j'} (eq : proceed.loop pts 1 j ij.1 IHQ Q@ j Q i ha = (Q', Q_j")) :
3 a Q1 Qi1 Q j1, proceed.finish 1 j 1j.1 Q1 Q i1 Q j» = (Q', Q j') A
Qi1.graph.WF (VisibleLT p pts i j) A
(V k €Qii.1, o (pts k) (pts i) (pts j) # .ccw) A
lo = a A Queues.Ordered p pts a i ( k h => Q.q[k.1]'(Q.sz » h.trans ij.1)) Q i1.1 A
(V (k : Fin n) (h : kK< j), (lo = k A k <a) - Qi1.q[k.1]1'(Q1.52 » h) = Q.q[k.1]'(Q.sz » h)) A
Queues.OrderedTail p pts a j ( k h => Q:1.q[k.1]'(Q1.52 » h)) Q j1.1 :=
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Lower bound: 29 points with no 6-holes (Overmars 2002)
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Final theorem

unsat 6hole cnf : (Geo.hexagonCNF 30).1isUnsat

holeNumber 6 : holeNumber 6 = 30 :=
le antisymm
(hole 6 theorem' unsat 6hole cnf)
(hole lower bound [

(1, 1200), (1o, 743), (22, 531), (37, 0), (306, 592),
(310, 531), (366, 552), (371, 487), (374, 525), (392, 575),
(396, 613), (410, 539), (416, 550), (426, 526), (434, 552),
(436, 535), (446, 565), (449, 518), (450, 498), (453, 542),
(458, 526), (489, 537), (492, 502), (496, 579), (516, 467),
(552, 502), (754, ©697), (777, 194), (1259, 320)])
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Conclusion

We used Lean to fully verify a recent result in combinatorial geometry based on
a sophisticated reduction to SAT.
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Upper and lower bounds for all finite hole numbers h(k) followed with
additional effort.

Open problems remain:
» Horton’s construction of h(k) = oo for 7 < k hasn’t been verified.
> Exact values of g(k) < oo for 7 < k aren’t known.

» Trust story for large SAT proofs could be improved.
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