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Empty 𝑘-gons

Fix a set 𝑆 of points on the plane, no three collinear. A 𝒌-hole is a convex 𝑘-gon 

with no point of 𝑆 in its interior.

5-hole ✔
convex 5-gon ✔

4-hole ✘
convex 4-gon ✘

3-hole ✘
convex 3-gon ✔
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5 points must contain a 4-hole

Theorem (Klein 1932). Every set of 5 points in the plane contains a 4-hole.
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9 points with no 5-holes
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9 points with no 5-holes

5-hole ✘
convex 5-gon ✔
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9 points with no 5-holes

convex 5-gon ✘
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The Happy Ending Problem

𝑔(𝑘) = least 𝑛 s.t. any set of 𝑛 points must contain a convex 𝒌-gon

ℎ(𝑘) = least 𝑛 s.t. any set of 𝑛 points must contain a 𝒌-hole

We just showed ℎ(4) ≤ 5 and 9 < ℎ(5)

Theorem (Erdős and Szekeres 1935). For a fixed 𝑘, every sufficiently large set of 

points contains a convex 𝑘-gon. So all 𝑔(𝑘) are finite.

Theorem (Horton 1983). For any 𝑘 ≥ 7, there exist arbitrarily large sets of 

points containing no 𝑘-holes. So ℎ(7) = ℎ(8) = … = ∞.
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Known tight bounds

h (3) = 3 (trivial) g (3) = 3 (trivial)

h (4) = 5 (Klein 1932) g (4) = 5 (Klein 1932)

h (5) = 10 (Harborth 1978) g (5) = 9 (Makai 1930s)

h (6) = 30 (Overmars 2002; Heule and Scheucher 

2024)
g (6) = 17 (Szekeres and Peters 2006)

We formally verified all the above in Lean.

Upper bounds by combinatorial reduction to SAT.

▸ We focused on ℎ(6), established this year.

▸ 𝑔(6) previously verified in Isabelle/HOL (Marić 2019).

▸ Efficient SAT encoding of Heule & Scheucher speeds up 𝑔(6) verification.

Lower bounds by checking concrete sets of points.
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Known tight bounds

2 < h (3) (trivial) 2 < g (3) (trivial)

4 < h (4) (Klein 1932) 4 < g (4) (Klein 1932)

9 < h (5) (Harborth 1978) 8 < g (5) (Makai 1930s)

29 < h (6) (Overmars 2002; Heule and Scheucher 

2024)
16 < g (6) (Szekeres and Peters 2006)

We formally verified all the above in Lean.
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SAT-solving mathematics

Reduction. Show that a mathematical theorem is true if a propositional 

formula φ is unsatisfiable.

Solving. Show that φ is indeed unsatisfiable using a SAT solver.

▸ Solving is reliable, reproducible, and trustworthy: formal proof systems 

(DRAT) and verified proof checkers (cake_lpr).

▸ But reduction is problem-specific, and involves complex transformations: 

focus of our work.
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Reduction from geometry to SAT

1. Discretize from continuous coordinates in ℝ² to boolean variables.

2. Points can be put in canonical form without removing 𝑘-holes.

theorem symmetry_breaking {l : List Point} :

  3 ≤ l.length → PointsInGenPos l →

  ∃ w : CanonicalPoints, l ≼σ w.points  

3. 𝑛 points in canonical form with no 6-holes induce a propositional 

assignment that satisfies 𝜑𝑛.

theorem satisfies_hexagonEncoding {w : CanonicalPoints} :

  ¬σHasEmptyKGon 6 w → w.toPropAssn ⊨ Geo.hexagonCNF w.len

4. But 𝜑30 is unsatisfiable.

axiom unsat_6hole_cnf : (Geo.hexagonCNF 30).isUnsat
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Discretization with triple-orientations

p

s q

r
t

𝜎(𝑝, 𝑟, 𝑞) = 1 (clockwise)
𝜎(𝑝, 𝑠, 𝑡) = 0 (collinear)
𝜎(𝑟, 𝑠, 𝑞) = −1 (counter-clockwise)
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Discretization with triple-orientations

p

s q

r
t

𝜎(𝑝, 𝑟, 𝑞) = 1 (clockwise)
𝜎(𝑝, 𝑠, 𝑡) = 0 (collinear)
𝜎(𝑟, 𝑠, 𝑞) = −1 (counter-clockwise)

∃ 𝑘-hole ⇔ a propositional formula over 𝜎(𝑎, 𝑏, 𝑐) is satisfiable
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Reduction from geometry to SAT

1. Discretize from continuous coordinates in ℝ² to boolean variables.

2. Points can be put in canonical form without removing 𝑘-holes.

theorem symmetry_breaking {l : List Point} :

  3 ≤ l.length → PointsInGenPos l →

  ∃ w : CanonicalPoints, l ≼σ w.points
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Symmetry breaking

Lemma. WLOG we can assume that the points (𝑝1,…, 𝑝𝑛) are in canonical form, 

meaning that they satisfy the following properties:

▸ (𝑥-order) The points are sorted with respect to their 𝑥-coordinates,

i.e., (𝑝𝑖)𝑥 < (𝑝𝑗)𝑥 for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.

▸ (CCW-order) All orientations 𝜎(𝑝1, 𝑝𝑖, 𝑝𝑗), with 1 < 𝑖 < 𝑗 ≤ 𝑛, are 

counterclockwise.

▸ (Lex order) The first half of list of adj. orientations is lex-below the second half:

[𝜎(𝑝⌈𝑛2 ⌉+1, 𝑝⌈𝑛2 ⌉+2, 𝑝⌈𝑛2 ⌉+3),…, 𝜎(𝑝𝑛−2, 𝑝𝑛−1, 𝑝𝑛)] ⪰

[𝜎(𝑝⌈𝑛2 ⌉−1, 𝑝⌈𝑛2 ⌉, 𝑝⌈𝑛2 ⌉+1),…, 𝜎(𝑝2, 𝑝3, 𝑝4)]
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Symmetry breaking

Starting set of points.

𝑥

𝑦

1

2

3

4

5

6

7

8

9
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Symmetry breaking

Rotation ensures distinct 𝑥.

𝑥
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Symmetry breaking

Translate leftmost point to (0, 0).
Ensures nonnegative 𝑥.

𝑥
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Symmetry breaking

Map (𝑥, 𝑦) ↦ (𝑦𝑥 ,
1
𝑥).

𝑥

𝑦

1

2

3
4

5 6
7

8
9
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Symmetry breaking

Bring point at ∞ back.

𝑥

𝑦

1

2

3
4

5 6
7

8
9
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Symmetry breaking

Relabel in order of increasing 𝑥.

𝑥

𝑦
1

2

3
4

5 6

7

8 9
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Reduction from geometry to SAT
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2. Points can be put in canonical form without removing 𝑘-holes.

theorem symmetry_breaking {l : List Point} :

  3 ≤ l.length → PointsInGenPos l →

  ∃ w : CanonicalPoints, l ≼σ w.points

3. 𝑛 points in canonical form with no 6-holes induce a propositional 

assignment that satisfies 𝜑𝑛.

theorem satisfies_hexagonEncoding {w : CanonicalPoints} :

  ¬σHasEmptyKGon 6 w → w.toPropAssn ⊨ Geo.hexagonCNF w.len

4. But 𝜑30 is unsatisfiable.

axiom unsat_6hole_cnf : (Geo.hexagonCNF 30).isUnsat

12 / 22



Running the SAT solver

CNF formula produced directly from executable Lean definition.

13 / 22



Running the SAT solver

CNF formula produced directly from executable Lean definition.

To verify ℎ(6) ≤ 30:

13 / 22



Running the SAT solver

CNF formula produced directly from executable Lean definition.

To verify ℎ(6) ≤ 30:

▸ CNF with 65 092 variables and 436 523 clauses

13 / 22



Running the SAT solver

CNF formula produced directly from executable Lean definition.

To verify ℎ(6) ≤ 30:

▸ CNF with 65 092 variables and 436 523 clauses

▸ partitioned into 312 418 subproblems

13 / 22



Running the SAT solver

CNF formula produced directly from executable Lean definition.

To verify ℎ(6) ≤ 30:

▸ CNF with 65 092 variables and 436 523 clauses

▸ partitioned into 312 418 subproblems

▸ each subproblem solved by CaDiCaL 1.9.5

13 / 22



Running the SAT solver

CNF formula produced directly from executable Lean definition.

To verify ℎ(6) ≤ 30:

▸ CNF with 65 092 variables and 436 523 clauses

▸ partitioned into 312 418 subproblems

▸ each subproblem solved by CaDiCaL 1.9.5

▸ unsatisfiability proofs checked on-the-fly by cake_lpr

13 / 22



Running the SAT solver

CNF formula produced directly from executable Lean definition.

To verify ℎ(6) ≤ 30:

▸ CNF with 65 092 variables and 436 523 clauses

▸ partitioned into 312 418 subproblems

▸ each subproblem solved by CaDiCaL 1.9.5

▸ unsatisfiability proofs checked on-the-fly by cake_lpr

▸ 25 876.5 CPU hours on Bridges 2 cluster of Pittsburgh Supercomputing Center
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Lower bounds

To prove 𝑛 < ℎ(𝑘), find a set of 𝑛 points with no 𝑘-holes.
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Lower bounds

To prove 𝑛 < ℎ(𝑘), find a set of 𝑛 points with no 𝑘-holes.

Naive checker algorithm is 𝒪︀(𝑛𝑘+1 log 𝑘) time.

We verified an 𝒪︀(𝑛3) solution

from Dobkin et al. (1990).
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Hole-finding algorithm
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Hole-finding algorithm: verification
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Hole-finding algorithm: verification

expands to

theorem of_proceed_loop

    {i j : Fin n} (ij : Visible p pts i j) {Q : Queues n j} {Q_j : BelowList n j} {Q_i} (ha)

    {IH} (hIH : ∀ a (ha : a < i), Visible p pts a j → ProceedIH p pts (ha.trans ij.1) (IH a ha))

    (Hj : Queues.OrderedTail p pts lo j (fun k h => Q.q[k.1]'(Q.sz ▸ h)) Q_j.1)

    (ord : Queues.Ordered p pts lo i (fun k h => Q.q[k.1]'(Q.sz ▸ h.trans ij.1)) Q_i)

    (g_wf : Q.graph.WF (VisibleLT p pts lo j))

    {Q' Q_j'} (eq : proceed.loop pts i j ij.1 IH Q Q_j Q_i ha = (Q', Q_j')) :

    ∃ a Q₁ Q_i₁ Q_j₁, proceed.finish i j ij.1 Q₁ Q_i₁ Q_j₁ = (Q', Q_j') ∧

      Q₁.graph.WF (VisibleLT p pts i j) ∧

      (∀ k ∈ Q_i₁.1, σ (pts k) (pts i) (pts j) ≠ .ccw) ∧

      lo ≤ a ∧ Queues.Ordered p pts a i (fun k h => Q.q[k.1]'(Q.sz ▸ h.trans ij.1)) Q_i₁.1 ∧

      (∀ (k : Fin n) (h : k < j), ¬(lo ≤ k ∧ k < a) → Q₁.q[k.1]'(Q₁.sz ▸ h) = Q.q[k.1]'(Q.sz ▸ h)) ∧

      Queues.OrderedTail p pts a j (fun k h => Q₁.q[k.1]'(Q₁.sz ▸ h)) Q_j₁.1 := by
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Lower bound: 29 points with no 6-holes (Overmars 2002)
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Final theorem

axiom unsat_6hole_cnf : (Geo.hexagonCNF 30).isUnsat

theorem holeNumber_6 : holeNumber 6 = 30 :=

  le_antisymm

   (hole_6_theorem' unsat_6hole_cnf)

   (hole_lower_bound [

    (1, 1260),  (16, 743),  (22, 531),  (37, 0),    (306, 592),

    (310, 531), (366, 552), (371, 487), (374, 525), (392, 575),

    (396, 613), (410, 539), (416, 550), (426, 526), (434, 552),

    (436, 535), (446, 565), (449, 518), (450, 498), (453, 542),

    (458, 526), (489, 537), (492, 502), (496, 579), (516, 467),

    (552, 502), (754, 697), (777, 194), (1259, 320)])
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Conclusion

We used Lean to fully verify a recent result in combinatorial geometry based on 

a sophisticated reduction to SAT.
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Upper and lower bounds for all finite hole numbers ℎ(𝑘) followed with 

additional effort.

Open problems remain:

▸ Horton’s construction of ℎ(𝑘) = ∞ for 7 ≤ 𝑘 hasn’t been verified.

▸ Exact values of 𝑔(𝑘) < ∞ for 7 ≤ 𝑘 aren’t known.

▸ Trust story for large SAT proofs could be improved.
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