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1 Introduction
The computer revolution is a revolution in
the way we think and in the way we
express what we think. The essence of this
change is the emergence of what might
best be called procedural epistemology—the
study of the structure of knowledge from
an imperative point of view, as opposed to
the more declarative point of view taken by
classical mathematical subjects.

Harold Abelson and Gerald J. Sussman
with Julie Sussman

Structure and Interpretation
of Computer Programs

This thesis is about rich, interactive computing environments. More specifically, it is about
user interfaces (UIs) for making mathematical constructions, reasoning about them, and dy-
namically interacting with their representations. More specifically still, it contributes a set of
UI features that we (see section 1.1 for who “we” refers to) designed and implemented for Lean
4 [71], an interactive theorem prover (ITP) and programming language, in hope of inching the
language’s tooling just a tiny bit closer towards providing such a rich environment.

An ITP broadly construed is a software system that works together with a human user (or,
increasingly often, anAI agent) to constructmathematical objects. The name “theorem prover”
suggests that the objects being built are generally proofs of theorems. While this is often
true, “theorem prover” is also an overly specific misnomer – essentially every theorem prover
out there allows first introducing objects about which we are to prove something. Objects
may include numbers, lists, and other kinds of inductive constructions, as well as functions,
quotients, and compound structures built out of those. After proving some facts about our
objects, we are then able to use those facts in constructing further objects. It is a matter of
taste whether theorems and proofs, rather than the objects about which theorems are proven,
deserve their privileged position in the name. More accurately, then, an ITP is an interactive
“construction yard” for mathematics; but I will continue to use the standard terminology.

The motivation for making this yard more alive and dynamic comes from the playful, exper-
imental spirit of computing and mathematics exemplified in the procedural epistemology of
SICP [1]. We want to interact in some way with the entities that we consider. For the simplest
of objects this is achievable physically and in a hands-on manner, for example by moving the
pebbles on an abacus to do basic arithmetic, or by manipulating a physically realized polyhe-
dron. As abstractions grow in complexity, the concrete approach breaks down and we begin
to study symbolic representations. Nevertheless the desire to manipulate and view them from
multiple perspectives remains, and we find that we can do this through computation.

Themost basic form of computation is evaluation, roughly the capacity to execute code written
in our language of expressions. This includes all kinds of purely algorithmic calculations from
the simple task of evaluating 1 + 1 into 2, to more complex operations such as approximat-
ing real numbers by calculating rational sequences to finite precision. Beyond evaluation we
have normalization which serves to deterministically simplify expressions (possibly involving
free variables) into canonical forms, and can subsume evaluation. But the notion of compu-
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tation I have in mind here is broader than just evaluation or normalization. The issue is that
evaluation requires access to executable code realizing the operations of interest. For instance,
evaluating 1+1 needs a program implementing addition. This becomes an obstacle in the pres-
ence of non-constructive axioms1, where structure-driven extraction of executable programs
corresponding to proofs in the Brouwer-Heyting-Kolmogorov sense may be unavailable. Nev-
ertheless, even in the presence of the axiom of choice we are able to “compute” facts about
objects. For instance, in homotopy theory one may speak of computing homotopy groups
even though in general this may require great ingenuity, and an algorithm for doing so is not
known [87]. The fundamental difference is that in this case, instead of taking program steps
until the process terminates and a canonical form is produced, we are rather applying rewrite
rules taken from a potentially non-terminating set. Rewriting has the effect of replacing equals
for equals in a compound expression until it looks like what we want.

Whatever flavour they might have, computational processes ultimately allow us to extract
useful information from our objects of interest, and to transform them into forms that are in
some respect more illuminating than the original. In 1962, Engelbart dared to imagine the
workspace of a computer-augmented architect [40]. We can similarly imagine the computer
mathematician of the future. Just as the architect uses CAD software to request various pro-
jections of the model of a building—a view of the outside, a plan of the first floor, schematics of
the electrical installation—the mathematician wishes at various points to search for known al-
gebraic invariants of a named topological space, to evaluate a computable function on concrete
data, or to display a diagrammatic representation of a theorem statement.

In some ways this future is now. With fast symbolic computation and access to internet data,
projections can in many cases be computed quite quickly. The internet provides access to a
great variety of computational tooling, databases of invariants such as the LMFDB [55] are
available, and powerful automation for ITP systems has been developed. In other ways we are
not quite there. Some interfaces can be clumsy and using them not worth the effort. A major
motivation of our work is to provide direct, intuitive access to computational mathematics
functionality from within an ITP.

Overview. This thesis is about user interfaces for ITP systems. Theorem provers vary in
many parameters. One parameter is their approach to proof refinement, that is the process of
incrementally constructing proofs by filling in successive detail. In section 2, I explain what
this means and present some of the options chosen by various systems. This is important to
understand because the choice of incremental construction strategy strongly influences the
baseline mode of interaction and the user interface. Approaches to ITP interfaces informed in
part by their chosen style of refinement are then surveyed in section 3. In section 4, we will
discuss the approach to metaprogramming taken in Lean 4. Finally in section 5, we introduce
the new user interface and ProofWidgets support library that we developed for Lean 4. Ulti-
mately, we will see that prover UI design involves thinking about an exciting mix of issues in
mathematical logic, type theory, software engineering, and human-computer interaction.

1.1 Attribution and acknowledgements
Sections 1 to 4 have not appeared elsewhere. Section 5 is a lightly edited copy of “An extensible
user interface for Lean 4” [75] written jointly with Edward W. Ayers and Gabriel Ebner.

1My use of “construction” is intended more generally than how it is used in constructive mathematics.
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Lean 4, its user interface, and the programming environment around them are ongoing open-
source efforts with many contributors of whom I am only one. Pull requests containing my
more relevant contributions specifically are linked below. Any other feature should be con-
sidered the work of others.

• leanprover/lean4 #161: Language Server Protocol server MVP

• leanprover/vscode-lean4 #30: LSP-based infoview

• leanprover/lean4 #568: Infoview RPC

• leanprover/lean4 #596: Interactive goals & diagnostics

• leanprover/vscode-lean4 #37: Info-on-hover widgets

• leanprover/vscode-lean4 #151: Move infoview to JavaScript modules

• leanprover/lean4 #1225: RFC: User widgets

• leanprover/vscode-lean4 #193: refactor: preparing for user-widgets and context sugges-
tions

• leanprover/vscode-lean4 #275: Multi-expression selection

• leanprover-community/mathlib4 #363: feat: add commutative diagram widget
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2 How formal objects are constructed

Birds fly high in the air and survey broad
vistas of mathematics out to the far
horizon. They delight in concepts that
unify our thinking and bring together
diverse problems from different parts of the
landscape. Frogs live in the mud below and
see only the flowers that grow nearby. They
delight in the details of particular objects,
and they solve problems one at a time.

Freeman Dyson
Birds and Frogs

It can be surprisingly difficult to formulate precisely what the point of mathematics is. As
examined by Thurston in his classic essay “On Proof and Progress in Mathematics” [98], it
has the curious recursive quality of serving primarily to advance human understanding of
mathematics. In its “informal” variation, that is mathematics conveyed in natural language
via sound waves and on paper, blackboard, or PDF, the information conveyed serves to com-
municate ideas. This may include defining new objects, giving examples, making conjectures,
stating and proving theorems. All these are of comparable importance; theorems are often the
goal, but the choice of definitions can make or break a theory, and interesting examples can
motivate the formation of new fields.

Mathematical communication, traditionally following the definition-theorem-proof schema,
can at first appear quite rigid when juxtaposed with, say, a free-flowing poem. In reality,
within these general bounds a great deal of variation is allowed. The apparent rigidity is an
illusion stemming from the use of an artificial subset of natural language (“Let 𝑋 be a widget.
We will show that 𝑋 has a property. By Theorem 1 it suffices to consider a subwidget 𝑌 ↪ 𝑋
such that..”). In reality, there is no prescribed script that every proofmust follow. It can proceed
in a forward fashion, first appearing to tell an unrelated story bymaking and proving a number
of assertions, and eventually demonstrating that the result follows clearly from the assertions.
Alternatively it can work backwards from the statement to be proven, decomposing it into
smaller pieces until nothing remains. Forwards and backwards reasoning can be intermixed
in all sorts of combinations. The level of detail and rigour is similarly up for negotiation,
depending on factors such as the expected knowledge and skills of the audience, the novelty
of the proof method, and the writer’s mood on a given day. The work expected of a reader
wanting to understand a piece of mathematics ranges from only having to follow small and
digestible steps, to having to reprove an entire statement left as an exercise.

Attempts to crystallize this variety into a precise, formal definition of proofs2, which could
then itself be mathematically studied, began towards the end of the 19th century. The work of
many logicians eventually led to the establishment of foundational formal systems including
logics, set theories, and type theories. Besides enabling meta-mathematics—the mathematical
study of mathematical tools and processes—formal representations have the useful property
of being easier to process algorithmically than natural language, making the mechanization
of mathematics possible.

2I will sometimes use just the word “proof” to refer to formal proofs; this is meant as a shorthand rather than
a philosophical commitment.
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Proof trees. A complete survey of all of these representations would take us too far afield.
It suffices to observe that essentially all (this is to say, all the ones that I am aware of) of them
view proofs as trees, or more generally as directed acyclic graphs. These structures make
explicit the implicit dependencies between assertions (“uniqueness of widget 𝑍 now follows
from the fact that it has property (2)”) present in textual proofs.

Recall that first-order logic comes equipped with a language of propositions or formulas that
includes conjunctions 𝜑 ∧ 𝜓, disjunctions 𝜑 ∨ 𝜓, universal statements ∀𝑥. 𝜑(𝑥), etc. On top
of this, we can introduce a provability judgment Θ ⊢ 𝜑 which we read as “the formula 𝜑 is
provable from the set of assumptions Θ”. When Θ is empty, we write ⊢ 𝜑, asserting that
“the formula 𝜑 follows from no assumptions”, i.e., “𝜑 is a tautology”. We derive instances
of the provability judgment, i.e., show that particular formulas are provable given particular
assumptions, by applying inference rules. As analyzed in the case of intuitionistic logic by
Martin-Löf [61], the collection of inference rules we choose to use can be seen as defining the
meanings of the propositional connectives. For example, consider the introduction rule (∧𝐼)
for conjunctions presented in natural deduction style.

Θ ⊢ 𝜑 Θ ⊢ 𝜓
Θ ⊢ 𝜑 ∧ 𝜓 (∧𝐼)

This rule can be read in two ways. Going downwards, it means that having already asserted
𝜑 and 𝜓, we can assert 𝜑 ∧ 𝜓. Going upwards, it says that to prove 𝜑 ∧ 𝜓 it suffices to prove
𝜑 and to prove 𝜓. Note that the downwards/upwards readings are not the same as informal
forwards/backwards reasoning, as we will see soon. Regardless of which way we read it, a
proof using this rule (with no antecedents) can be viewed as a tree like the one below.

⊢ 𝜑 ∧ 𝜓 by (∧𝐼)

⊢ 𝜑 by (⋯) ⊢ 𝜓 by (⋯)

The root node of such a tree is the theorem being proved, whereas other nodes are judgments
derived in the course of the proof. Nodes are annotatedwith their mode of justification, i.e., the
rule of inference ‘by’ which they follow. Edges point to subproofs of premises required by the
inference rule. We may abbreviate subtrees as cones ▽, writing ‘by (⋯)’ for some unspecified
justification.

In some implementation contexts we may be concerned about representation efficiency. At
least two tools are available for reducing the size of proofs in situations in which a single
proof can be used more than once. One, we may introduce an intermediate lemma 𝜓 via the
cut rule.3

Λ ⊢ 𝜓 Θ,𝜓 ⊢ 𝜑
Θ,Λ ⊢ 𝜑 (𝐶𝑢𝑡 𝜓)

3Though the cut rule ismore relevant in sequent calculus presentations of logic, it is also derivable in structural
natural deduction from the rules for implication [9].
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When introducing a cut by 𝜓, we only need to store its (presumably long and complicated)
proof once, in the derivation of Λ ⊢ 𝜓. We may then reuse it arbitrarily many times in the
derivation ofΘ,𝜓 ⊢ 𝜑 using the hypothesis ruleΘ,𝜓 ⊢ 𝜓. For example, in the left tree below
a cut by 𝜑 is introduced. Alternatively, if our representation of proofs is being implemented
as a concrete data structure and the programming language in use supports storing multiple
references (or pointers) to a single object, we may reuse a subproof using this language mech-
anism. In this case trees effectively become graphs like the one on the right below. These
techniques can exponentially reduce proof size; but we are not concerned with complexity
here so let’s only speak of trees.

⊢ 𝜑 ∧ 𝜑 by (𝐶𝑢𝑡 𝜑)

⊢ 𝜑 by (⋯) 𝜑 ⊢ 𝜑 ∧ 𝜑 by (∧𝐼)

𝜑 ⊢ 𝜑 by (𝐻𝑦𝑝) 𝜑 ⊢ 𝜑 by (𝐻𝑦𝑝)

⊢ 𝜑 ∧ 𝜑 by (∧𝐼)

⊢ 𝜑 by (⋯)

Crucially, in computer-assisted mathematics proof trees do not serve as static, immutable en-
tities which we can admire only as wholes. Their role is primarily to aid the incremental
construction of proofs. There are two natural orders in which we could do this: leaves-to-root
or root-to-leaves. In root-to-leaves order, we start off with an incomplete tree (nevermind how
such an object might be formally defined; here, illustrations suffice) containing just one node
for the assertion that we wish to prove, with a missing justification (?). We then proceed to
build up parts of the tree, applying inferences upwards, until every assertion has been veri-
fied. A node with its justification missing is called a goal. The sequence of trees below read
left-to-right illustrates one way we could build up a proof in this order. Goals are highlighted
in blue boxes.

𝜑 ⊢ 𝜑 ∨ 𝜓 by (?) 𝜑 ⊢ 𝜑 ∨ 𝜓 by (∨𝐼𝐿 𝜓)

𝜑 ⊢ 𝜑 by (?)

𝜑 ⊢ 𝜑 ∨ 𝜓 by (∨𝐼𝐿 𝜓)

𝜑 ⊢ 𝜑 by (𝐻𝑦𝑝)

In the above example we started from a root goal and used the left-introduction rule for dis-
junctions (∨𝐼𝐿) to create a child goal (a subgoal). We then justified it as a hypothesis (𝐻𝑦𝑝).
Alternatively, in leaves-to-root order, we could have applied inferences downwards by first
asserting the leaf, and then concluding the theorem, as below. In this mode we are working
with a forest of proof trees and gluing them together.

𝜑 ⊢ 𝜑 by (𝐻𝑦𝑝)

𝜑 ⊢ 𝜑 ∨ 𝜓 by (∨𝐼𝐿 𝜓)

𝜑 ⊢ 𝜑 by (𝐻𝑦𝑝)

In principle, with arbitrary mixing of upwards and downwards reasoning there are combinato-
rially many ways to assemble any finite proof tree. Nevertheless, there is no loss of generality
in constructing proofs in root-to-leaves order. This style, sometimes called proof refinement,
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is preferred by most modern theorem proving software. Two observations might justify why
this is the case. One is that upwards construction can be mechanical and driven by the shape
of the goal, rendering it amenable to proof automation. For example, there is really only one
way to prove a conjunction, and that’s to prove both conjuncts. Contrast this with downwards
constructions which require ‘inventing’ the leaves that we start from. The second observation
has to do with goal states. In general, at any given time, there can be multiple unjustified
leaves in the tree, i.e., multiple goals. This frontier viewed as a list is called the goal state. The
goal state below contains two goals.

𝜑,𝜓, 𝜃 ⊢ 𝜑 ∧ (𝜓 ∧ 𝜃) by (∧𝐼)

𝜑, 𝜓, 𝜃 ⊢ 𝜑 by (?) 𝜑, 𝜓, 𝜃 ⊢ 𝜓 ∧ 𝜃 by (∧𝐼)

𝜑, 𝜓, 𝜃 ⊢ 𝜓 by (𝐻𝑦𝑝) 𝜑, 𝜓, 𝜃 ⊢ 𝜃 by (?)

The concept of goals and goal states turns out to be tremendeously useful in computer-assisted
proof. In proof assistants based on tactic frameworks (section 3.2), the goal state is all the user
ever sees. This works so well that end users of such systems are often not aware of a proof tree
being constructed under the hood; their perspective is like that of a 2-dimensional Flatlander
standing on top of the tree, seeing only the frontier, with the rest obscured. In other systems
such as those based on holes (section 3.3), the whole tree may be visible but it is always possible
and commonly useful to zoom in on one of the goals, temporarily forgetting the rest of the
tree.

One potential point of confusion is how the forward steps of paper mathematics come into
play during root-to-leaves construction. They are not downwards inferences. Rather, they are
applications of those rules which ‘invent’ a new hypothesis, in the sense of having a premise
that is not a subformula of the goal sequent: for instance, the cut rule or implication elimi-
nation. To a first approximation, these are the creative steps. An intuitionistic proof of the
double-negated law of the excluded middle benefits from a cut.

⊢ ¬¬(𝜑 ∨ ¬𝜑) by (→ 𝐼)

¬(𝜑 ∨ ¬𝜑) ⊢ ⊥ by (𝐶𝑢𝑡 ¬(𝜑 ∨ ¬𝜑) → ¬𝜑)

¬(𝜑 ∨ ¬𝜑) ⊢ ¬(𝜑 ∨ ¬𝜑) → ¬𝜑 by (⋯) ¬(𝜑 ∨ ¬𝜑), ¬(𝜑 ∨ ¬𝜑) → ¬𝜑 ⊢ ⊥ by (⋯)

2.1 Type theory
So far I wrote only of propositions and their proofs. This might appear at odds with an ear-
lier assertion that constructions of objects are just as important. However, during the 20th
century, pioneering computer scientists and mathematicians made a number of observations
bringing forward structural relationships between proofs and effective constructions. This
tradition includes, among numerous others, the work of de Bruijn, Curry, Feys, and Howard
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on connections between logical and computational calculi; of Lambek on categorical models
of these calculi; of Brouwer, Heyting, and Kolmogorov on interpretations of proofs in intu-
itionistic mathematics as functions or processes; and of Kleene on realizability.

Informed by these ideas, the most coherent modern account of what it means to construct
mathematical objects has been developed in a multitude of flavours of type theory. In a type
theory, the central object of study is the classification of constructions into types.4 A type
theory includes a language of constructions: basic ones such as integers and functions, but
also proofs themselves, as we will see; and a language of types: the type of integers, function
types, and proposition-types that classify proofs. Basic examples of classifications are that the
integer 2 has type ℤ, or that the mapping 𝑥 ↦ 𝑒𝑥 has type ℝ → ℝ. Type theories range
from the simple, capable of proving judgments like the above, to the dependent, in which fairly
complicated types and type families become available.

Just like the provability judgmentΘ ⊢ 𝜑 of logic we considered above is hypothetical in that𝜑
is proved under the assumptions inΘ, the judgments of any type theory are hypothetical over
contexts. A context, often denoted by Γ, is a list 𝑥1 ∶ 𝑇1, 𝑥2 ∶ 𝑇2, …, 𝑥𝑛 ∶ 𝑇𝑛 of variables with
specified types. Contexts allow us to suppose to existence of constructions with the specified
types but otherwise unknown structure. The basic typing judgment Γ ⊢ 𝑡 ∶ 𝑇 says that “if for
every 𝑥𝑖 ∶ 𝑇𝑖 ∈ Γ, 𝑥𝑖 stands for an arbitrary construction of type 𝑇𝑖, then 𝑡 is a construction of
type 𝑇”. In general, both 𝑡 and 𝑇 may use the variables in Γ. Our two examples are rendered
into this language as ⋄ ⊢ 2 ∶ ℤ and ⋄ ⊢ 𝑥 ↦ 𝑒𝑥 ∶ ℝ → ℝ with ⋄ denoting an empty context.

Proofs are an important special case of mathematical constructions. In first-order logic, deriv-
ability of Θ ⊢ 𝜑 means that 𝜑 is provable from Θ, but the judgment itself says nothing about
how 𝜑 was proven. This information is instead recorded in the proof tree: we used ‘by (𝑅𝑢𝑙𝑒)’
annotations for it. The loss of information is appropriate when we think of propositions as
merely candidates for a Boolean truth value. On the other hand, it can be obstructive when
we wish to analyze the structure of proofs, for example to recover their computational con-
tent. In type theory, additional information is stored in proof-constructions. Following the
dictum of propositions-as-types, we express proof-constructions by embedding a language of
propositions into the language of types. To prove a proposition, we construct an inhabitant of
the proposition-type. The incremental process of building a proof tree for a formula 𝜑 under
assumptions Γ then becomes the process of constructing ℎ such that Γ ⊢ ℎ ∶ 𝜑. For example,
we may begin refining a proof that for any natural number 𝑛, there is a prime greater than 𝑛,
as follows (read the sequence of trees bottom-to-top).

4This is not the only possible perspective on type theory, but it is mine.
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⊢ 𝜆𝑛. (?2, (?4, ?5)) ∶ ∀(𝑛 ∶ ℕ). Σ(𝑝 ∶ ℕ). 𝑝 prime ∧ 𝑛 < 𝑝 by (∀𝐼)

𝑛 ∶ ℕ ⊢ (?2, (?4, ?5)) ∶ Σ(𝑝 ∶ ℕ). 𝑝 prime ∧ 𝑛 < 𝑝 by (Σ𝐼)

𝑛 ∶ ℕ ⊢ ?2 ∶ ℕ by (?) 𝑛 ∶ ℕ ⊢ (?4, ?5) ∶ ?2 prime ∧ 𝑛 < ?2 by (∧𝐼)

𝑛 ∶ ℕ ⊢ ?4 ∶ ?2 prime by (?) 𝑛 ∶ ℕ ⊢ ?5 ∶ 𝑛 < ?2 by (?)

⊢ 𝜆𝑛. (?2, ?3) ∶ ∀(𝑛 ∶ ℕ). Σ(𝑝 ∶ ℕ). 𝑝 prime ∧ 𝑛 < 𝑝 by (∀𝐼)

𝑛 ∶ ℕ ⊢ (?2, ?3) ∶ Σ(𝑝 ∶ ℕ). 𝑝 prime ∧ 𝑛 < 𝑝 by (Σ𝐼)

𝑛 ∶ ℕ ⊢ ?2 ∶ ℕ by (?) 𝑛 ∶ ℕ ⊢ ?3 ∶ ?2 prime ∧ 𝑛 < ?2 by (?)

⊢ 𝜆𝑛. ?1 ∶ ∀ (𝑛 ∶ ℕ). Σ(𝑝 ∶ ℕ). 𝑝 prime ∧ 𝑛 < 𝑝 by (∀𝐼)

𝑛 ∶ ℕ ⊢ ?1 ∶ Σ(𝑝 ∶ ℕ). 𝑝 prime ∧ 𝑛 < 𝑝 by (?)

⊢ ?0 ∶ ∀ (𝑛 ∶ ℕ). Σ(𝑝 ∶ ℕ). 𝑝 prime ∧ 𝑛 < 𝑝 by (?)

In the above sequence we begin by introducing a new variable into the context with (∀𝐼) to
prove the universal statement. Next, we inhabit the existential quantifier (Σ is a proof-relevant
version of ∃) using (Σ𝐼). This generates two subgoals: one for the witness ?2, and one for the
proof ?3 that this witness is prime and greater than 𝑛. Lastly, we decompose the conjuction
into two subgoals with (∧𝐼), and leave the tree above unfinished. While the initial few steps
were mechanical, finishing the proof requires some insight. Multiple witnesses could work:
for instance setting ?2 ∶= min { 𝑝 ∣ 𝑝 prime ∧ 𝑝 divides 𝑛! + 1 }, we would end up with the
complete construction

𝜆𝑛. (min { 𝑝 ∣ 𝑝 prime ∧ 𝑝 divides 𝑛! + 1 }, (ℎ1, ℎ2))

assuming that ℎ1, ℎ2 are some constructions such that

𝑛 ∶ ℕ ⊢ ℎ1 ∶ min { 𝑝 ∣ 𝑝 prime ∧ 𝑝 divides 𝑛! + 1 } prime

and
𝑛 ∶ ℕ ⊢ ℎ2 ∶ 𝑛 < min { 𝑝 ∣ 𝑝 prime ∧ 𝑝 divides 𝑛! + 1 }

Observe that as we build up the proof, information about used inferences flows down into
the root construction (highlighted in strawberry). Specifically, every ‘by (𝑅𝑢𝑙𝑒)’ step gets
recorded in a piece of syntax. Universal introduction corresponds to function introduction,
whereas existential and conjunction introduction accumulate pairs. The judgment records not
just that the proposition was proven, but also how.
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There are two observations to be made. First, because information about used inferences is
stored both in the root and the ‘by (𝑅𝑢𝑙𝑒)’ annotations, there is a degree of redundancy. It
begs the question whether the whole tree could be reconstructed mechanically from just the
syntax of the root judgment. Second, if the proof is sufficiently constructive (e.g. 𝑝 prime is
defined as the Boolean output of a primality checker, min as an algorithm that works on finite
subsets of ℕ, divides as a computable modulo operation, etc), it ought to have an algorithm
associated to it. Given 𝑛, the algorithm should return in finite time a prime greater than 𝑛.
In the example, it appears that something like such an algorithm is recorded in the root term;
but its semantics have not been clarified.5 Making these observations precise is the point of
departure for two opposing schools of thought: computational and intensional type theory.

Computational type theory. The computational approach was championed by Martin-
Löf [82], as well as by Constable and his team in the PRL [15] family of systems. Intuitively, a
computational type theory is defined on top of a programming language and is in some sense
about that language. More precisely, in order to specify a computational theory we begin
with a 𝜆-calculus, usually untyped, as well as an operational semantics for it that specifies
how programs compute. Because programs of this language will end up implementing the
algorithmic content of our proofs, they are sometimes called realizers after Kleene. We call
fully evaluated programs canonical, whereas programs that can undergo further evaluation
are called non-canonical. The former class might include 37, 𝜆𝑥.𝑥, or Nat (types are themselves
programs), whereas the latter might contain (𝜆𝑥.𝑥) 37 (which reduces to 37) or let (𝑥, 𝑦) =
(29, 2) in 𝑥 + 𝑦 (which reduces to 31). The remainder of a computational theory consists of
derived notions defined in reference to canonical terms and evaluation. First, we specify which
canonical programs count as canonical types, written⊢ 𝑇 type for 𝑇 a canonical program. For
instance,⊢ Nat type is a sensible axiom. Second, which canonical programs count as canonical
terms inhabiting a given canonical type, written ⊢ 𝑡 ∈ 𝑇6 for 𝑡 a canonical program and 𝑇 a
canonical type (i.e., a canonical program 𝑇 such that⊢ 𝑇 type holds). For example⊢ 37 ∈ Nat.
Finally, the typing relation is extended to non-canonical programs by saying that a program
𝑡 has type 𝑇, also written ⊢ 𝑡 ∈ 𝑇, when 𝑇 evaluates to a canonical program 𝑇′, 𝑡 evaluates
to a canonical program 𝑡′, ⊢ 𝑇′ type and ⊢ 𝑡′ ∈ 𝑇′. An immediate consequence of the above
definition is that typing is not decidable: to determine whether a program has some type, we
need to run it first. The derivation tree of a proven judgment ⊢ 𝑡 ∈ 𝑇 cannot be recovered
mechanically from just the syntax of the judgment, answering our earlier question in the
negative. Since the map from proof tree to realizer is lossy, in order to prove something we
must do a bitmorework than just writing down the realizer. Consequently, the user experience
of working inmost implementations of computational type theory is that of refining derivation
trees similarly to what we did for first-order logic and in the proof of the infinitude of primes
above. In actual implementations this is usually supported by a tactic framework and can be
referred to as tactic-based proving. When our goal has type 𝑇, we apply refinement rules in
order to construct a realizer 𝑡 inhabiting 𝑇, i.e., one for which ⊢ 𝑡 ∈ 𝑇 holds. The realizer is
generally the output of this process, although we can also write one down first and then prove
that it has the correct type.

5While it is sometimes said that ‘proofs are programs’, this is only accurate either with a very broad meaning
of ‘program’ in mind, or if we restrict to constructive type theories. It depends on the specifics of each type
theory whether terms are executable or not, and one may represent non-computable axioms equally well in this
framework.

6As opposed to the intensional notation ⊢ 𝑡 ∶ 𝑇.
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Intensional type theory. In contrast, in the intensional approach [60] the order of concep-
tual priority is different. Rather than specifying a language of programs first and then defining
typing judgments in terms of its operational behaviour, we specify all of these at once in a mu-
tually inductive way. For instance, the rule of conjunction introduction (which we used in the
example proof of the infinitude of primes) might be postulated as

Γ ⊢ 𝑡 ∶ 𝜑 Γ ⊢ 𝑢 ∶ 𝜓
Γ ⊢ (𝑡, 𝑢) ∶ 𝜑 ∧ 𝜓 (∧𝐼)

This is essentially the same as conjunction introduction in first-order logic, except that every
typing judgment is now accompanied by a proof termwitnessing how it was proven. The differ-
ence with the computational approach is that the above rule would be provable (or admissible)
there instead of being postulated axiomatically. The benefit of axiomatizing the collection of
acceptable inference rules is that in doing so we are able to finely control their algorithmic
properties. In particular, we can design the system in such a way that the typing judgment
becomes decidable: given Γ, 𝑡 and 𝑇, a typechecking algorithm can decide whether Γ ⊢ 𝑡 ∶ 𝑇
holds. In order to achieve this, intensional proof terms generally contain more information
than the realizers of computational type theory. For instance, the equality elimination rule
must be annotated with the proof of equality that was eliminated (left) rather than be acting
silently (right):7

Γ ⊢ ℎ ∶ 𝑇 = 𝑈 Γ ⊢ 𝑡 ∶ 𝑇
Γ ⊢ ℎ ▸ 𝑡 ∶ 𝑈 (= 𝐸)

Γ ⊢ ℎ ∶ 𝑇 = 𝑈 Γ ⊢ 𝑡 ∶ 𝑇
Γ ⊢ 𝑡 ∶ 𝑈 (= 𝐸′)

As in computational type theory, we can view the proof term as the output of a proof re-
finement process. However, decidability of the typing judgment affords us a new mode of
working, referred to variously as “programming in the type theory” or term-mode proving. In
this mode, we simply write down the term 𝑡 (treating it as an input instead of an output) and
ask the system to check Γ ⊢ 𝑡 ∶ 𝑇. To support incremental constructions, the terms we write
down are permitted to contain holes such as the ?1, ?2, … we saw earlier. Modern implemen-
tations of intensional theories support arbitrary interleavings of tactic-mode and term-mode
proof. Constructions may also be annotated with even more information so that their types
can be deduced (and only Γ,𝑡 remain as inputs to the typechecker), a feature known as type
inference. Most of the large, modern theorem proving systems based on type theory follow
the intensional approach due to its desirable algorithmic features.

An intensional proof termmay contain subterms that are not computationally relevant, i.e., do
not influence evaluation. For instance, if the only provable equalities are between programs
that exhibit identical computational behaviour, then ℎ ▸ 𝑡 ought to always evaluate to the same
value as just 𝑡. These irrelevant subterms are removed during erasure, a procedure that extracts
the pure computational content realizing a proof term. Erasure can be seen as one connection
between intensional proof terms and computational realizers.

7Extensional type theory is sometimes used to mean an axiomatically presented system (i.e., one whose judg-
ments, like in intensional type theory, are not defined in terms of an operational semantics) in which an equality
reflection rule similar to the one on the right is present.
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Tactics vs proof terms. There are many more increasingly subtle syntactic and semantic
differences between different flavours of type theory. But as far as user interfaces are con-
cerned, the two styles of proof refinement distinguished here make for a reasonable classi-
fication. In tactic-mode, favoured by traditional logics and computational type theories, we
incrementally construct a derivation tree for a provability or typing judgment in root-to-leaves
order. We will see that this can be achieved by working in a meta-level language (such as de-
scribed in section 4), or by using tactic frameworks (section 3.2) that output a type inhabitant
under the hood. In term-mode, enabled in intensional type theories, wewrite down a candidate
inhabitant for a type and the system checks its correctness for us. To enable incrementality,
we rely on incomplete terms including holes (section 3.3).

13



3 Interfaces for constructing formal objects

It may be possible (unfortunately) to fall
into Lisp in this event.

John Harrison
The HOL Light System Reference

The simplest graphical user interface one can have is not to have one at all. A proof checker is
a piece of software that consumes a machine-readable formal proof (such as a proof term or
another representation of a proof tree) and checks its correctness. It outputs YES or NO, generally
accompanied by additional diagnostic information such as which parts of the candidate proof
are wrong in the case of a NO. Some of the earliest checkers include de Bruijn’s AUTOMATH
[26] and Trybulec’s Mizar [100].

A proof checker can be transformed into a tool for interactive proof refinement by simply
running it in a loop: write down a partial proof, save the file, run the checker, inspect its out-
put for errors, correct the errors, repeat. This process is facilitated by sufficiently informative
error messages produced by the checker: they ought to say not just where the error is, but
also show the relevant goal when a subproof is missing, explain why a given reasoning step
is incorrect, etc. This implementation strategy provides a rudimentary development environ-
ment, but it has limitations: we may want to retrieve additional information about our formal
proof developments, and have the interface provide that quickly; we may want the interface
to support renamings and other refactorings commonly used in software engineering; finally,
we may want to view mathematical objects in a graphical rather than a text-based form. For
reasons such as these, over time more specialized user interfaces geared towards interactive
and automated proof have been developed. They exist as standalone programs, editor plugins,
and websites.

In this section we will cover four styles of prover interface: programming in a meta-language
(section 3.1), tactic scripts (section 3.2), term-mode proving in type theory (section 3.3), and
systems with external verification conditions (section 3.4). A broader survey of graphical the-
orem proving interfaces is given by Ayers [10, section 5.1].

3.1 Meta-proving with abstract types
When we implement a proof checker, we unavoidably do so in some programming language.
This suggests a possible user interface: just use that same programming language to prove
things! While there are many conceivable ways of achieving this, an influential design has
been established in the Edinburgh LCF system [45]. It continues to live on in HOL4 [92] and
HOL Light [47].

In this design, we expose proof checking as a library in our chosen programming language. To
distinguish the language we program the proving environment in from the logical language
we write the environment for, we call the former the meta language and the latter the object
language. In the case of HOL Light, the object language is a higher-order logic whereas the
meta language is OCaml. In our meta language, we define a type term of object language
terms. Pretty-printing and parsing facilities are generally installed so that terms can be written
in reasonably natural form rather than as abstract syntax trees. For instance, in HOL Light,
we can use the OCaml read-eval-print-loop (REPL) to write down the number 57 and the
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statement ‘57 is prime’. Propositions are terms in higher-order logic, so these are both terms.
Terms written in backticks are passed through the object language parser.

# `57`;;
val it : term = `57`
# `prime 57`;;
val it : term = `prime 57`
Next we define a meta type thm of theorems, theorems being provable judgments about the
object language. For instance, in HOL Light a primality checker can show that 57 is composite.
The checker hands us back a value of type thm:
# PRIME_CONV `prime 57`;;
proving that 57 is composite
val it : thm = |- prime 57 <=> F
Since we have full access to the meta programming environment, a priori there is nothing
preventing us from creating values of type thm that are not actual theorems. Yet for thm to be
worthy of its name, we want the property that any value of type thm has a valid proof. For
this reason, when designing the Edinburgh LCF, Milner and collaborators endowed their meta
language (appropriately named ML) with a module system and facilities for type abstraction.
Abstraction allows an ML module 𝐾 to specify that thm is some type, but one whose definition
may not be observed in any other module, and whose values may only be constructed using
functions exposed by 𝐾. Thus if each of these functions is sound, then the whole system must
be sound: we must only audit the implementation of 𝐾 for correctness as no other module
could possibly derive a theorem without going through 𝐾. The module 𝐾 is called the kernel,
forming the trusted core of a theorem proving system.

The functions exposed by 𝐾 will generally be primitive inference rules of the object logic. For
instance, to support equality reasoning, the HOL Light kernel includes a function K.TRANS :
thm -> thm -> thm that implements transitivity of equality. We can use it to prove that 7+ 7 =
11 + 3 in a roundabout way:

# let thm1 = NUM_REDUCE_CONV `7+7`;;
val thm1 : thm = |- 7 + 7 = 14
# let thm2 = NUM_REDUCE_CONV `11+3`;;
val thm2 : thm = |- 11 + 3 = 14
# TRANS;;
val it : thm -> thm -> thm = <fun>
# SYM;;
val it : thm -> thm = <fun>
# TRANS thm1 (SYM thm2);;
val it : thm = |- 7 + 7 = 11 + 3

Proof checker vs kernel. Recall that a proof checker consumes a complete, static record
of a proof and checks it for correctness. A system capable of producing proof objects that
can be verified by an “easy” algorithm (e.g. one that only accepts basic, “self-evident” proof
steps) is sometimes said to satisfy the de Bruijn criterion [13]. De Brujin designs facilitiate the
development of independent checkers that do not need to trust any component of a sophis-
ticated theorem proving system. In contrast, an LCF-style kernel provides a set of functions
for dynamically checking proofs, or equivalently for dynamically constructing theorems. The
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internal representation of thm only has to store the minimal amount of information necessary
to carry out these checks. Indeed, many HOL family provers represent thm as just the theorem
statement in order to save memory: the proof tree is never stored. In this model, the proof
tree can be seen as the execution trace of an algorithm that successfully constructs a thm by in-
teracting with the kernel. Nevertheless, when discussing other theorem proving systems built
around a core proof checker it is common to conflate terminology and refer to that checker as
the kernel: we use “LCF-style kernel” to disambiguate.

Programming tactics. To minimize the amount of trusted code, kernel functionality is in-
tentionally primitive. LCF-style kernels andminimal proof checkers will generally not support
proof refinement directly. For instance, the only rules exposed by the HOL Light kernel are
the forward inferences. The function TRANS we saw above is the top-to-bottom reading of

Γ ⊢ 𝑡1 = 𝑡2 Δ ⊢ 𝑡2 = 𝑡3
Γ, Δ ⊢ 𝑡1 = 𝑡3

(TRANS)

To program other proof strategies we take advantage of the fully-featured meta language that
our object logic is embedded in. Over time, the theorem proving community converged on
one roughly consistent approach to the implementation of proof strategies: tactics. Generally
speaking, a tactic is a meta program supporting root-to-leaves inference in the object logic. A
tactic reduces one or more goals into zero or more smaller subgoals (as discussed in section 2).
When no more subgoals remain, the proof is finished. Some tactics support basic proof re-
finement by implementing the upwards versions of primitive inference rules. Others provide
more powerful proof search algorithms such as decision procedures for decidable theories,
potentially producing many inference steps in one invocation.

In HOL-style systems, tactics live in the subgoal package. A simple subgoal package can be
implemented as follows. First, we represent each goal as a tuple of a list of antecedents and
a succedent: goal = term list * term. Then, a tactic is a program tactic = goal -> goalstate
which reduces a given goal into a new goalstate = goal list * justification, that is a list of
subgoals together with a justification = thm list -> thm. The purpose of the justification is
to assemble a proof of the original goal given proofs of the subgoals. This is necessary because,
recall, the kernel only supports downwards proof checking. I do not know whether a subgoal
package as simple as this ever existed in the wild. In practice, a number of additional features
are needed to support realistic proofs: tactic combinators/tacticals, metavariables, unification,
and so on. A modern, flexible definition of a tactic was contributed independently by Asperti
and coauthors [7] to Matita, as well as by Spiwack [94] to Coq. Among other features, their
frameworks support tactics operating on multiple goals at once. A similar design is used in
Lean 4 (section 4).

Proving with tactics in HOL Light amounts to stating a goal using g and applying tactics using
e. Below, we prove an obvious proposition:8

# g `p ==> q ==> p /\ q`;;
Warning: Free variables in goal: p, q
val it : goalstack = 1 subgoal (1 total)

8The example is just for illustration. In practice, it would be proven in one step by an automated proof search
tactic.
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`p ==> q ==> p /\ q`

# e(REPEAT DISCH_TAC);;
val it : goalstack = 1 subgoal (1 total)

0 [`p`]
1 [`q`]

`p /\ q`

# e(CONJ_TAC THEN (FIRST_ASSUM ACCEPT_TAC));;
val it : goalstack = No subgoals
Note that g, e, et al. are ordinary OCaml functions, but the short names hint at their intended
use as interactive commands. Thus the OCaml REPL forms a sort of proto-UI for interactive
theorem proving. With clever applications of metaprogramming a surprising variety of styles
is achievable. For instance, Harrison [46] demonstrates that HOL systems can be extended
with support for declarative proof in the style of Mizar (“Note that 𝑃 is true, so we can deduce
𝑄. The conclusion follows from facts established so far.”), as opposed to the more procedural
style of HOL (“Strip the quantifier, split into two subgoals, close both using ITAUT_TAC.”). In
this way, a metaprogrammable system is entirely open and uniformly extensible.

Nevertheless, working in a bare-bones environment such as this can get awkward. A problem
that we address in section 5 is that the interface is not referential. More immediately, the REPL
provides limited functionality for working with proof scripts. For instance, to record the above
interactive session into a single declaration, we have to manually copy-paste our sequence of
tactics:

# let THM1 = prove(`p ==> q ==> p /\ q`,
(REPEAT DISCH_TAC) THEN CONJ_TAC THEN (FIRST_ASSUM ACCEPT_TAC));;

val THM1 : thm = |- p ==> q ==> p /\ q
Furthermore, after a proof has been recorded as an invocation of prove, there is no longer an
easy way to view the intermediate goal states, e.g. that after REPEAT DISCH_TAC we are to prove
𝑝, 𝑞 ⊢ 𝑝∧𝑞. Even after one gains proficiency writing HOL proofs, they remain difficult to read.
For these reasons and more, interfaces dedicated to writing, editing, and reading structured
tactic scripts have been invented.

3.2 Tactic scripts
In logic, a goal consists of a succedent that is supposed to follow from a list of antecedents. In
type theory, it is an expected type in a local context. In either case, the capability to see the goal
state at every step (that is, wedged inbetween successive tactic invocations) is hugely bene-
ficial, if not outright necessary, to understanding formal tactic-based proofs. In this section,
we look at a few user interfaces that display goal states and more, pointing out salient and
interesting features.

3.2.1 Interleaved goal states

In section 3.1, we saw that a metalanguage REPL provides a simple means of writing tactic
proofs. Within an interactive session, the tactic commands are visually interleaved with goal
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states printed by g and e. The proof display of NuPRL [3], an assistant for computational
type theory, takes this visual form as its starting point. NuPRL’s display as seen in fig. 3.1
is, however, interactive: any tactic step can be inspected, copied, or edited in which case the
remainder of the proof from that step onwards is replayed.

Figure 3.1: The proof of an internal parametricity theorem is displayed in the NuPRL user
interface. The first tactic step, using an automated proof search tactic Auto, is selected.

The NuPRL environment provides a number of now standard features: the definition of any
symbol can be viewed in a new window, and proof subtrees can be temporarily collapsed; as
well as some features that are not commonly seen: a definiendum can be exploded by replacing
it with its definiens inline, and term editing is structural rather than character-based; finally
some features that are unique to NuPRL: to support collaborative proof development, proofs-
in-progress can be sent to other users of the system, and are synchronized in real-time as
the distributed collaborators make changes. Given NuPRL’s development timeline, one may
conjecture that the tradition of rich Smalltalk UIs [44] had an influence on the interface.

3.2.2 Two-pane proof editors

Rather than showing the goal states inline, we may want to keep the proof script together in
the text editor buffer, showing the goals in another panel instead. Such a two-pane view of the
world was popularized by ProofGeneral [8] (shown in fig. 3.2a) and CoqIDE (fig. 3.2b). Today
it is the most common style of ITP interface, used also in Lean 4.

Checkpointed vs continuous interaction. Unlike with interleaved goal states, in the two-
pane model not all intermediate goals are visible at all times. Thus we must determine which
goals to show when. There are generally two ways to do this.
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(a) The ProofGeneral interface operating on an
Isabelle/Isar proof script in Emacs. In the edi-
tor buffer, the prefix of the proof that has been
checked is indicated in blue. The goal state at the
end of the checked region is shown in a panel be-
low. Screenshot via Aspinall [8].

(b) A CoqIde window. A proof by induction is in
progress in the proof script editor. The current
subgoal is shown on the right. Screenshot via the
Coq reference manual [97].

Figure 3.2

The traditional model (sometimes referred to as awaterfall or, tongue-in-cheek, an iron curtain)
keeps track of a prefix of the proof script that has been checked so far. The checked part is
indicated visually, e.g. in blue in fig. 3.2a, and terminates in a checkpoint. In this model,
the goal display shows the goal at the checkpoint. The checkpoint is advanced and receded
manually by the user. Advancing it corresponds to executing the next step in a tactic proof,
or more generally the next command in a buffer. Another way to think about the process is
as stepping through a program in a debugger.9 As of 2022, waterfall interaction remained the
most popular in the Coq ecosystem [97], where users prefer ProofGeneral and CoqIDE [4]. It
is also used in other systems, for example the Emacs fstar-mode10 for F∗ [96].

One advantage of checkpointing is its good support for caching. The checked region is “locked”
in that any edit made below the checkpoint cannot invalidate it. Thus we never have to re-run
a tactic or command that has already been checked. This can be beneficial when working with
slow, heavyweight tactics. Additionally, since moving the checkpoint is an intentional action,
users have a clear idea of how long it may take and when to do it.

On the other hand, editing anything above the checkpoint recedes it back to that position. It
then has to be manually advanced again. This adds friction to investigations of how a change
at one point affects the result of a command appearing later down in the buffer, and to ordinary
proof development for users who prefer to see the results of their changes instantaneously.

The continuous model of interaction takes a different approach. Here there is no checkpoint:
instead, the goal state at the current text cursor position is always displayed, updating in real-

9This is accurate in a quite literal sense since tactics are metaprograms operating on the goal state. On this
view, the goal display is a domain-specific display of the memory state.

10https://github.com/FStarLang/fstar-mode.el

19

https://github.com/FStarLang/fstar-mode.el


time as soon as the cursor moves or an edit is made. This variant is closer to how programmers
interact with modern development environments. Continuous checking is provided in the Is-
abelle/PIDE [103] environment, by the VS Code extension for PVS [64], as well as by all editor
extensions for Lean. A new system with continuous checking directly inspired by Lean’s de-
sign isMetamath Zero [28]. It was also implemented in Coqoon [41] for Coq, although Coqoon
does not seem to have caught on. The recent Coq LSP11 project provides both continuous and
checkpointed interaction for Coq.

Robustness of tactics. Recall (chapter 2, intensional type theory) that in some formal sys-
tems it is possible to work either in tactic-mode or in term-mode. An advantage of tactic
scripts over proof terms is that because they express a high-level proof strategy rather than a
specific proof directly, they tend to be more robust to changes in the library as well as easier to
adapt to prove similar theorems. In many cases the exact same script can be reused between
different proofs. In HOL Light we can declare a simple INDUCT_ADD_TAC to prove multiple facts
about addition by induction.

# let INDUCT_ADD_TAC = INDUCT_TAC THEN (ASM_REWRITE_TAC[ADD]);;
val INDUCT_ADD_TAC : tactic = <fun>
# let thm1 = prove(`!n. n + 0 = n`, INDUCT_ADD_TAC);;
val thm1 : thm = |- !n. n + 0 = n
# let thm2 = prove(`!n m. n + (SUC m) = SUC (n + m)`, INDUCT_ADD_TAC);;
val thm2 : thm = |- !n m. n + SUC m = SUC (n + m)
On the other hand, when using tactics our proof script is a metaprogram rather than an object-
level proof tree. This metaprogram needs to be re-executed every time the formal development
is checked. Re-execution can be problematic when slow, heavyweight automation is used. In
practice the issue can be solved by providing two versions of slow tactics: a complete one
that executes proof search from scratch, as well as a faster one that requires a hint containing
sufficient information to reconstruct a proof quickly. For example, the polyrith12 tactic invokes
a full Gröbner basis search, but can be hinted with just a linear combination of polynomial
equalities.

Even having solved the above issue, we still find ourselves in contexts wherein we do want
to write proof terms directly in order to finely control the shape of definitions, as well as
the algorithmic content of proofs when “programming in the type theory”. When proofs are
relevant, term-mode can be a better fit.

3.3 Hole-driven development
The modern approach to term-based proof refinement was first seen in ALF [59] and Epigram
[66]. It continues to live on in Agda [76] and Idris [24], where it is the predominant style of
programming (or proving: both systems take the BHK interpretation seriously) today. In this
style, we operate on incomplete programs containing placeholders known as typed holes. In
more programming-oriented communities, the approach is known as type-driven development.

The idea is to first state the type of the program or proof we want to construct, and then let
that type guide us in writing the program. We covered an example proof of the infinitude of
primes using holes ?𝑖 in section 2, type theory. Here let us carry out a construction of the map

11https://github.com/ejgallego/coq-lsp
12https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Tactic/Polyrith.lean
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function for lists in Agda 2.6.3. We begin by stating the desired type and writing a placeholder
for the body.

map : {A B : Set} → (A → B) → List A → List B
map f as = ?
Upon invoking load to start an interactive session, the editor extension replaces the place-
holder by a typed hole:

map : {A B : Set} → (A → B) → List A → List B
map f as = {! 0!}
The intended mode of interacting with holes is via editor actions and commands. These are
pieces of functionality available in the editor UI that either tell us something about the current
partial construction, or directly modify it in a desired way when invoked. In intensional type
theories, editor actions act analogously to tactics in the sense that both approaches provide
metaprograms that construct proof terms. The major difference is in what is recorded in the
source code: tactic-mode proofs save only the tactic script which will construct the term when
executed, specifying how but not what, whereas here the constructed proof term is stored
directly and once.

We can inspect the hole’s type and local context (i.e., the goal) using the goal-and-context
command:

List B
as : List A
f : A → B
B : Set (not in scope)
A : Set (not in scope)
One possibleway tomake progress is to invoke the auto commandwhich carries out automated
term search. It works, but does not quite give us the desired term:

map : {A B : Set} → (A → B) → List A → List B
map f as = []
Thus let’s backtrack and use case as instead to split on the head of as. This produces two typed
holes:

map : {A B : Set} → (A → B) → List A → List B
map f [] = {! 0!}
map f (x ∷ as) = {! 1!}
In this state, running auto finishes the first construction correctly. For the second one it gives
another plausible but incorrect construction, namely map f as. When this happens, we need
to write down a candidate term manually. Suppose we wrote an unusual one:

map : {A B : Set} → (A → B) → List A → List B
map f [] = []
map f (x ∷ as) = {! 11 + 3 0!}
Now a few commands are available for inspecting the candidate 11+3. We may run infer-type
to learn its type: this returns ℕ; run normalize to compute its normal form: this gives 14;
finally, we can run give to attempt to solve the goal using the term: this obviously fails. Having
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learned that this is not the right approach, we give the more sensible candidate ? ∷ ?. The
system accepts it and renders two new holes:

map : {A B : Set} → (A → B) → List A → List B
map f [] = []
map f (x ∷ as) = {! 0!} ∷ {! 1!}
At this point the holes are sufficiently type-constrained that auto correctly fills in both:

map : {A B : Set} → (A → B) → List A → List B
map f [] = []
map f (x ∷ as) = f x ∷ map f as
With sufficiently powerful editor support, hole-driven development can be made quite ef-
ficient. Some of the most sophisticated interactive environments for general-purpose func-
tional programming based on editor actions have been developed for Idris. Idris-mode [68] for
Emacs provides the commands we saw in Agda above, as well further features demonstrated
in fig. 3.3.

Figure 3.3: The Emacs UI of idris-mode shows a list of currently pending holes. The list is
interactive. Hovering over the subterm Prelude.Nat.plus shows its type and documentation.
A context menu can be opened to normalize the subterm, jump to its definition, show implicit
arguments inline as in the case of (=), or find the dependencies and reverse dependencies of
a constant.

Holes andmetavariables. To implement a systemwith support for typed holes, we have to
clarify what sort of thing they are and endow themwith a concrete representation. Differences
of representation between different theorem proving systems have a concrete impact on the
experience of using these systems.

Observe that a variable corresponds to an entity existing hypothetically in the object language:
the sentence 𝑥 = 0 only makes sense (“typechecks”) supposing the existence of some 𝑥 ∶ ℕ.
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To indicate that 𝑥 = 0 is a well-formed object-level proposition under that assumption, we
make the contextual judgment 𝑥 ∶ ℕ ⊢ 𝑥 = 0 prop.

A hole is similar to a variable, but corresponds to an entity existing hypothetically at themeta
level. It is difficult to make this apparent when working directly in the object language as
we did above in Agda. Let us return to HOL Light where the meta/object boundary is clearer
because object-level terms are values of the meta type term. Consider the following OCaml
function which takes a single term as the argument and substitutes it for h0 in h0 + 3:
# let hole_plus_3 (x : term) = subst [x,`(h0:num)`] `h0 + 3`;;
val hole_plus_3 : term -> term = <fun>
We evaluate the function on some examples. When the input is of the correct type, we get
back a well-formed term.

# hole_plus_3 `"eleven"`;;
Exception: Failure "vsubst: Bad substitution list".
# hole_plus_3 `11`;;
val it : term = `11 + 3`
As can hopefully be glossed from the above, one possible representation of a hole is as a closure
in the meta language. Here the entity existing hypothetically at the meta level is an object-
level x : term. Since x is a variable in the body of the closure, in this representation we refer
to holes as metavariables.

Unfortunately, representing metavariables this way is unwieldy in practice: an arbitrary clo-
sure cannot be inspected, so such an implicit representation makes it complicated or impos-
sible to transform incomplete terms. Instead, we can internalize metavariables by extending
the object language with support for holes.

While formal details are out of scope here, one way to make holes in the object language
precise using the notion of a metavariable context was worked out by Nanevski, Pfenning,
and Pientka [73]. In dual-context style, we can write judgments that look something like

?1 ∶∶ (𝑥 ∶ ℕ ⊢ ℕ); 𝑛 ∶ ℕ ⊢ 𝜆(𝑥 ∶ ℕ). ?1 + 𝑛 ∶ ℕ → ℕ

which we read as

Supposing that ?1 is some construction of type ℕ well-formed in context 𝑥 ∶ ℕ,
and supposing that 𝑛 is some construction of type ℕ,
𝜆(𝑥 ∶ ℕ). ?1 + 𝑛 is a construction of type ℕ → ℕ.

and could expand to

Supposing that
(supposing that 𝑥 is some construction of type ℕ, ?1 is a construction of type ℕ),

and supposing that 𝑛 is some construction of type ℕ,
𝜆(𝑥 ∶ ℕ). ?1 + 𝑛 is a construction of type ℕ → ℕ.

illustrating that in this picture, metavariables amount to internalized hypothetical judgments:
the term we substitute into a hole can itself depend on object-level variables. Thus every hole
comes with an associated local context in which its instantiations are well-formed.

In other approaches, holes become part of the object language indistinct from any other sort
of term and are endowed with typing rules as well as operational semantics. Hazel is an editor
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environment purpose-built for handling incomplete programs. Its core calculus Hazelnut [78]
assigns static semantics to holes and editor actions operating on them, while followup work
[79] provides operational semantics for incomplete programs. In Hazel, modifying parts of a
program provides a live, continuous view of the output.

An important choice in the representation of metavariables is whether they are allowed to
depend on each other. In dependent type theory, providing this flexibility allows for goals
whose types contain metavariables corresponding to solutions of other goals. The goal 𝑛 ∶
ℕ ⊢ ?3 ∶ ?2 prime ∧ 𝑛 < ?2 we saw in (section 2, type theory) is an example.

Had we not had this flexibility, the only way to carry out an upwards refinement of a goal of
type Σ(𝑝 ∶ ℕ). 𝑝 prime ∧ 𝑛 < 𝑝 would have been to immediately give the witness. Indeed, an
attempt to create two holes in this way fails in Idris 1.3.2.

zero : (n : Nat ** n = 0)
zero = (?a ** ?b)

-- When checking deferred type of Main.b:
-- No such variable Main.a
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3.4 External verification conditions
A final interaction model to cover is seen in tools wherein proofs and some lemma statements
do not matter. This arises in cases where we want to know that a property holds but do not
wish to be burdened with the gruesome details of how it was established. This is commonly
the case in software verification: at the end of the day, if our code is functionally correct,
memory-safe, or has another desirable property, we don’t care how exactly this follows from
foundational axioms.13

Software verification tools consequently aim to outsource as much of the verification burden
as possible to underlying automated theorem provers (ATPs). While processing a formal de-
velopment, such tools generate verification conditions (VCs): statements that we need proven
but whose proofs may involve lots of uninteresting detail. Common VCs include termination
of recursive functions, subgoals generated by the typechecker, or that a piece of code meets
its postcondition assuming the precondition. The VCs are then sent off to the ATP, and some
indication of whether they were successfully discharged is shown in the user interface. UIs
for verification systems differ on how much information is shown.

In Dafny [54], the recently improved interface [65] attempts to communicate the minimal
amount of information necessary to complete a verification. Source locations relevant to failed
VCs are displayed prominently to aid the user in fixing their assertions, whereas successful
VCs, while possible to inspect if needed, are hidden by default. Dafny uses Z3 [72] as its
underlying ATP but provides no other way to prove assertions. The lack of an escape hatch
means in particular that it can be difficult or impossible to establish facts that are beyond the
reach of automation.

To remediate this issue, other systems have taken a hybrid approach providing a mixture of
automated and manual, tactic-based proof. F∗ [96] and PVS [80] are two systems based on
type theory with support for predicate subtyping [88] in the case of PVS, and refinement types
in the case of F∗. The rule accepted by PVS is

Γ ⊢ 𝑎 ∶ 𝑇 Γ ⊨ 𝑏[𝑎/𝑥]
Γ ⊢ 𝑎 ∶ {𝑥 ∶ 𝑇 ∣ 𝑏}

where 𝑥 ∶ 𝑇 ⊢ 𝑏 ∶ 𝑏𝑜𝑜𝑙 is a predicate and {𝑥 ∶ 𝑇 ∣ 𝑏} is the subtype of those elements of 𝑇
for which 𝑏 holds. The premise Γ ⊨ 𝑏[𝑎/𝑥] refers to the truth value of an arbitrary proposition
which cannot be algorithmically checked. Since F∗ postulates a similar law for refinements,
the typing judgments of both systems are undecidable. While building up a candidate typing
derivation, their typecheckers collect instances of this premise in order to offload verifying
them as VCs to underlying automation. PVS generally relies on builtin decision procedures,
whereas F∗ sends its VCs to Z3. In F∗, VC proofs are not recorded, but hints that aid Z3 in
concluding unsatisfiability more efficiently in the future can be stored in .hints files. In PVS
a serialized form of the proofs is recorded in a .prf file stored separately from the .pvs source
code written by the user.

Despite theoretical similarities, the experience of using the two systems is different. TheMeta-
F∗ [62] metaprogramming framework allows users to write LCF-style tactics that combine
primitive backwards inferences in order to either completely close a propositional goal, or

13A similar, common attitude shows up in formalised mathematics when it comes to “obvious” statements that
nevertheless have to be justified to a theorem prover.
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to reduce it to a list of subgoals that are within reach of Z3 (or can be processed further by
other tactics). However, there is no interface dedicated to interactively refining the proof of
a single VC goal by applying tactics as interactive commands. Instead, it is possible to mark
subformulas𝜑 of 𝑏 (or of another formula that arises somewhere within a program verification
development) with a by_tactic 𝜏 𝜑 annotation that instructs the typechecker to run the tactic
𝜏 when 𝜑 appears in a positive position14 within a VC before that VC is shipped off to Z3.
Since VCs undergo somewhat unpredictable transformations, it is difficult to tell a priori what
goals our tactic 𝜏will end up attempting to solve. In F∗, the solution is to instrument the tactic
with dump, an instruction that displays the goal state the tactic is operating on. Once the tactic
is executed, the invocation of dump results in the goal (or goals) being shown in the UI. One can
also view the sequence of all goal states by setting --tactic_trace_d 1 on the command line.
By consulting the impact of their changes on the shown goals, one may then incrementally
develop 𝜏 until it satisfactorily manipulates a particular VC. In the Emacs interface shown in
fig. 3.4b this proceeds in the checkpointed interaction model (see section 3.2.2), whereas a new
VSCode extension15 provides continuous interaction.

PVS provides a more traditional interactive proof UI. In PVS a distinction is made between VCs
and “more interesting” theorems. The VCs are referred to as type-correctness conditions (TCCs)
because they arise at instances of the aforementioned subtyping rule. The system attempts to
discharge TCCs using purpose-built automation. Whenever a TCC fails to be solved imme-
diately, a new interactive proof buffer with that TCC as the goal is shown. The user enters
tactics such as induct or grind that have the usual effect of updating a persistently-displayed
goal state. When all goals have been successfully proven, the buffer can be closed. Interactive
proof is also the usual way in which manually entered LEMMAs, presumably more complex than
TCCs, are established. The Emacs interface for PVS shown in fig. 3.4a reflects this design. A
dedicated panel (with interleaved goal states) is provided for interactive proof, whereas the
number of checked TCCs is noted much more subtly in the status bar. The recent ProofMate
interface [63] for PVS provides a more sophisticated proof development environment in VS-
Code.

14Meaning roughly to the right of an implication where it will need to be proven by Z3, as opposed to formulas
appearing on the left which are taken as hypotheses and not proven.

15https://github.com/FStarLang/fstar-vscode-assistant
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(a) A summation lemma is verified using PVS in
Emacs. The topmost buffer contains the theory
source code. Below, an interactive proof buffer is
used to establish the lemma. The status bar at the
bottom displays TCC status.

(b) The F∗ mode in Emacs is used to establish
a simple arithmetic fact. In the source buffer, a
tactic canon' that displays the goal state and then
runs a normalization procedure is defined and in-
voked on the lemma. In the goal state buffer
below, a goal that the tactic was invoked on is
shown.

Figure 3.4
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4 Metaprogramming in Lean 4

We want to enable users to work in the
simplest model appropriate for their
respective use case while always keeping
open the option to switch to a lower, more
expressive level.

Leonardo de Moura and Sebastian Ullrich
The Lean 4 Theorem Prover

and Programming Language

In most of the systems we discussed so far, whether we prove using tactics or “program in the
type theory”, the meta language is clearly distinct from the object language. In the Edinburgh
LCF, the meta language was ML. In HOL Light, one writes tactics in OCaml that operate on
proofs in higher-order logic. In Isabelle, tactics are written in Standard ML. Though in Agda
one writes object-language terms and propositions directly, the system that checks and com-
piles these is written in Haskell. The situation in Coq is fuzzier: the system itself is written in
OCaml but a number of extensions exist, including MetaCoq [93] which allows writing tactics
directly in the object language Gallina.

Idris 2 [23], Lean 4 and F∗ belong to a new generation of bootstrapped dependently-typed lan-
guages. In these systems, the implementation (meta) language is also the object logic.16 Their
frontends (elaboration, typechecking, compilation, etc) are programmed entirely or mostly in
the meta-object language. I will refer to the unified formal system as just “the language” unless
disambiguation is necessary to reduce confusion.

In this section we will cover some notable features of Lean 4 including metaprogramming
based on elaborator reflection, as well as outline how Lean’s frontend operates. The language
has been described in detail by Ullrich [102].

4.1 Commands extend the environment
Lean is a dependently-typed, purely functional programming language. The top-level unit of
organization corresponding to a single .lean file is conventionally called amodule.17 Modules
are linear sequences of commands. Examples of commands include inductive type definitions
inductive and function definitions def .

/-- Our very own version of the natural numbers, following the one in the standard library. -/
inductive Nat' where

| zero : Nat'
| succ : Nat' → Nat'

/-- The Sudan function was the first known example of a total and computable function
that is not primitive recursive. -/
def sud : Nat → Nat → Nat → Nat

| 0, x, y => x+y
16An early system with this property was ACL2 [50] whose object logic and meta language were based on

Common Lisp.
17Note that Lean does not currently have facilities for abstracting over module implementations.
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| _+1, x, 0 => x
| n+1, x, y+1 =>
let z := sud (n+1) x y
sud n z (z+y+1)

-- Lean functions are presumed to be total unless marked otherwise. We give the frontend
-- a hint regarding how it should prove termination.
termination_by sud n _ y => (n, y)

For the present discussion it is best to understand Lean modules from the perspective of what
the language implementation does when processing them rather than in the usual way: as
what the contents of a module might be (what they might denote). We aim for a procedural
rather than a declarative understanding. The above code snippet will be explained from this
perspective.

The piece of software (itself written in Lean, via bootstrapping) that processes Lean modules
is known as the frontend. When invoked on a module, the frontend goes through it in top-
to-bottom order, processing the commands one by one. The frontend maintains a number
of internal data structures. An important one is the environment: a list of all the inductive
types, structures and functions introduced so far. It also contains additional metadata such as
documentation strings. The environment is viewed as append-only, growing monotonically
while the frontend is processing a module.

In our example, the first command encountered is the inductive definition Nat'. To process it,
the frontend parses the source string, elaborates the resulting syntax tree18 into an inductive
type of the underlying type theory, sends the type to be checked by the kernel19, and finally
appends it to the environment if the kernel check was succesful. The sequence of events is
summarized in fig. 4.1. If the environment beforehand was 𝑒, after the command is processed
the environment becomes an extended one 𝑒[Nat' ↦ 𝜇𝑇. (zero ∶ 𝑇) + (succ ∶ 𝑇 → 𝑇)]. The
second command introducing the function sud is processed similarly except in that a function
constant, rather than an inductive type, is added to the environment.

inductive Nat'
(declaration
(declModifiers ..)
(inductive ..))

Nat' ∶= 𝜇𝑇.
(zero ∶ 𝑇) +
(succ ∶ 𝑇 → 𝑇)

✓
Parser Elaborator Kernel

Figure 4.1: The definition of an inductive type Nat' is processed by successive stages of the
Lean frontend. The parser ingests a string and produces a syntax tree. Syntax is then elabo-
rated into a definition in the core type theory. The definition is checked by the kernel.

The process of elaboration is of particular interest. To see what elaboration is and why it is
needed, let us name a few layers of the Lean 4 system explicitly. The logical foundation, “Lean’s
type theory”, is a dependent type theory based on the Calculus of Inductive Constructions due
to Coquand and Paulin [36]. Let’s call it LeanTT. The precise rules and set-theoretic semantics
of LeanTT have been described by Carneiro [29].

Then, there is the surface-level (also known as vernacular) language of Lean. Let us call it
LeanLang. LeanLang is what makes up the source code of a Lean module. A priori, LeanLang is

18The syntax tree is not fully abstract: information about whitespace is retained, for instance.
19This component is a typechecker rather than an LCF-style kernel (see section 3.1, proof checker vs kernel),

but it is conventional in the Lean community to call it a kernel.
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entirely separate from LeanTT. LeanTT is fairly spartan. It misses many features familiar from
LeanLang such as implicit arguments, typeclasses, tactics, even pattern-matching. This makes
LeanTT easier to model mathematically and the kernel smaller, reducing the trusted code base
whose correctness guarantees correctness of the entire system, and rendering it easier to im-
plement independent typecheckers for LeanTT. However, it also means that the frontend needs
to fill in a substantial amount of missing detail when going from LeanLang to LeanTT: it needs
to elaborate on the input. Thus, the elaborator forms the connection between LeanLang and
LeanTT. Elaborators are incredibly complex. For an idea of what they do, I defer to Bauer’s
excellent explanation.20

Distinguishing the two layers resolves a terminological ambiguity: it is common to call a term
𝑡 of LeanLang a “term of the type theory”. What one is really referring to is the LeanTT term that
𝑡 elaborates to.

Syntactic extensions. The linear, top-to-bottom fashion in which modules are processed
means that no command can depend on the results of ones lexically below it. Mutual defini-
tions, such as two functions that call each other recursively, must consequently be wrapped
in an explicit mutual .. end block in order to be processed successfully. On the other hand,
the fact that the entire parse-elaborate-typecheck sequence is run at every command means
that each stage of the sequence, including parsing, can depend on modifications to the envi-
ronment introduced by preceding commands. This design was chosen intentionally by Ullrich
and de Moura [101] in order to support syntactic extensions. The syntax command declares
an extension to the grammar of LeanLang and makes it immediately usable. Under the hood,
the extension is just another kind of thing that gets appended to the environment.21

-- Introduce new syntax for the term `sud`.
syntax "𝓈𝓊𝒹(" term,* ")" : term
macro_rules

| `(𝓈𝓊𝒹($n, $x, $y)) => `(sud $n $x $y)

-- Use it immediately.
def twentySeven : Nat :=
𝓈𝓊𝒹(1, 2, 3)

Extensible syntax is powerful. It enables defining embedded domain-specific languages (ED-
SLs) such as React-inspired JSX22 or a shallow embedding of C23 and using them right away,
even in the same file. On the other hand, it complicates the theoretical description. Since ex-
tensions modify the language, there isn’t actually a single LeanLang. Instead, a function exists
mapping any environment 𝑒 to its LeanLang(𝑒) determined by the extensions registered in 𝑒.
Pathological LeanLangs can arise from the capacity to override pieces of basic core syntax. For
instance, we can transform anonymous functions into just their bodies.

macro_rules
| `(fun $_ => $t) => `($t)

20https://mathoverflow.net/a/376973/496340
21The actual frontend operates on an object of type Lean.Environment. This object stores a strict subset of what

I am referring to as the ‘environment’ here; in particular, it does not store syntax extensions.
22https://github.com/leanprover/std4/pull/267
23https://github.com/tydeu/lean4-alloy
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theorem wat : (fun _ => 27) = 27 :=
rfl

In contrast, LeanTT stays fixed. There is no way to modify kernel behaviour, providing a con-
sistent logical baseline. This design is essentially that of meta-provers such as HOL Light:
unlimited expressivity at the cost of having to maintain some discipline.

4.2 Code generation and metaprogramming
The following command that evaluates sud can appear in the same module as the definition of
sud. It causes the frontend to helpfully print out the number 57.
#eval sud 1 0 5
In this section we further complicate the story, just enough to explain why and how #eval
works, and then introduce Lean metaprogramming. The complication is in adding a third
layer: besides the vernacular LeanLangs and the type theory LeanTT, there is an intermediate
representation LeanIR of executable code.24 The system includes a code generator capable of
compiling any executable term of LeanLang to LeanIR. Code so produced can be immediately,
dynamically executed in the interpreter. This is what happens while processing #eval com-
mands. Code for the input term is generated and interpreted. The interpreter’s outputs are
returned to the elaborator and handled there in order to display them to the user (or show an
error in case of interpretation failure). The IR is discarded afterwards. The sequence of events
is displayed in fig. 4.2.

#eval sud 1 0 5 (eval ..) Elaborator
57 sud 1 0 5

let x_1 : obj := 1;
let x_2 : obj := 0;
let x_3 : obj := 5;
let x_4 : obj := sud x_1 x_2 x_3;
ret x_4

Parser

Code generator

Interpreter

Figure 4.2: The data flow throughout the execution of an ♯eval command. The vernacular

syntax ♯eval sud 1 0 5 is parsed and elaborated. Besides a term sud 1 0 5 of LeanTT, code in
LeanIR is generated for the input term and interpreted. Results of interpretation are fed back
to the elaborator.

In the case of #eval , the IR is ephemeral: generated, interpreted, and then discarded. Other
frontend commands store the results of code generation persistently. Similarly to syntax ex-
tensions, code produced in this manner is appended to the environment. For instance, intro-
ducing a function via def has this effect. The earlier processing of def sud caused an exe-
cutable representation of the Sudan function to be stored by the frontend. The saved LeanIR
was used afterwards to evaluate it on concrete inputs, and could be used to compile the Lean

24In fact there are multiple IRs, but there is no need to complicate further still.
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module to a native binary. There are also commands that persist LeanTT terms but are not
code-generating, notably theorem declarations.

Elaborator reflection. We have seen that algorithms operating on object language entities
are programmed — metaprogrammed — in the meta language of a given theorem prover. In a
system whose meta and object languages are identified, the meaning of ‘metaprogramming’
is a little more specific, now referring to the capacity of the language to manipulate its own
programs. This is sometimes referred to as reflective metaprogramming.

In Lean, metaprogramming is enabled by two features: the ability to evaluate Lean code while
the frontend is processing a module, as well the fact that the frontend itself is implemented
in Lean and can be imported as a library. A basic definition that supports metaprogram-
ming is Lean.Syntax, the type of syntax trees. This type is extensible and can express terms
of LeanLang(𝑒) for any 𝑒. Lean.Syntax is imported by default. We may use it for example to
manually write down the syntax of 2 + 2 .

open Lean in
def twoPlusTwo : Lean.Syntax :=

mkNode `«term_+_»
#[mkNode `num #[mkAtom "2"],
mkAtom "+",
mkNode `num #[mkAtom "2"]]

Of course writing parsed syntax by hand rapidly ceases being fun. To avoid it, the language
comes equipped with a quotation (more precisely quasiquotation) operator that takes a piece
of code and produces the corresponding syntax tree as a value. Quotations are written `(..)
and expand to a value of type Lean.Syntax in an appropriate monad. The monad is neces-
sary because parsing accesses the current environment in order to locate registered syntax
extensions. To use quotations, we need to import a module from the Lean frontend.

import Lean.Meta.Basic

#eval (`(fun x => x) : Lean.MetaM Lean.Syntax)
The above code operates essentially identically to fig. 4.2. The principal difference is that while
it is being executed in the interpreter, our monadic program `(fun x => x) invokes frontend
components in order to process the quotation. Since the program was initially invoked by
the frontend, the interaction becomes bidirectional and mutually recursive. In particular, the
program being interpreted may modify the frontend state, for example by registering new
entities within the environment. This enables support for yet another point of extension: the
command elab extends LeanLang by a new command that, when encountered by the frontend,
will be handled by invoking the metaprogram that we gave as input to elab . The snippet
below exemplifies this.

import Lean.Elab

-- Register a new command.
elab "#greet " n:ident : command => do

Lean.logInfo m!"Hello {n}!"

-- Use it. This prints "Hello world!".
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#greet world
The general approach of allowing arbitrary subterms to invoke the elaborator in order to sup-
port metaprogramming was pioneered by Christiansen and Brady in Idris [32, 33, 31], as well
as by Ebner and collaborators in Lean 3 [39]. It is known as elaborator reflection. More broadly,
support for source code quotation and runtime evaluation of metaprograms was pioneered in
LISP [67]. Modern languages with similar features25 include Racket [42], Clojure [48], and
Julia26 [20].

To conclude the section, it’s worth noting that the metaprogramming framework satisifies an
equational law we might expect to hold: that quoting followed by evaluation is the identity
transformation, at least if we exclude pathologically self-referential metaprograms that refer to
their own line:column positions or concrete syntax. The following metaprogram which quotes
and then elaborates a command has exactly the same effect (again up to any concrete syntactic
metadata being stored) as just that command.

import Lean.Elab

-- Prints "So meta!".
#eval do

let s ← `(command| #eval "So meta!")
Lean.Elab.Command.elabCommand s

The above program can be read as “Parse the command #eval "So meta!" into its syntax tree
and call that 𝑠. Process 𝑠 in the frontend using elabCommand, the function that normally pro-
cesses commands.”. This discussion is why I initially advocated for the procedural perspective
over the declarative, viewing Lean for a moment as closer to an effectful language manipulat-
ing a persistent environment of pure functions than to a purely functional language. It appears
more awkward to accommodate observations made here under the latter view.

4.3 Interactive theorem proving
The practice of theorem proving in Lean 4 is ultimately not too dissimilar to other ITP systems.

The system is foundationally an intensional type theory and supports its two styles of proof
refinement. It is established practice in the community to write definitions in term-mode, but
prove most theorems in tactic-mode. Utilizing syntactic extensions, custom syntax mirroring
textbook mathematical notation is commonly registered.

No domain-specific language is mandated for authoring tactics: they are ordinary metapro-
grams that manipulate goal states in the Lean.Elab.Tactic.TacticM monad, aligning the tactic
framework in spirit with its early predecessors in the LCF and HOL family.

There does exist a sublanguage for using tactics, i.e., for writing tactic scripts. This language
achieves a semi-declarative style of proof script along the lines of Mizar [100] and Isabelle/Isar
[104]. Let us briefly illustrate some of its features. For the sake of example, define a Nat' that
does not clash with the builtin type of natural numbers, as well as addition and introduce an
infix notation for it.

25Such languages are sometimes described as homoiconic or supporting “code as data”. However as van Schel-
ven [89] points out, these terms are quite ambiguous and may be better avoided.

26https://docs.julialang.org/en/v1/manual/metaprogramming/
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inductive Nat' where
| zero : Nat'
| succ : Nat' → Nat'

open Nat'

def add : Nat' → Nat' → Nat'
| n, zero => n
| n, succ m => succ (add n m)

infixl:65 " + " => add
Next, we prove a basic fact using tactics.

@[simp]
theorem succ_add (n m : Nat') : (succ n) + m = succ (n + m) := by

induction m <;> simp [add, *]
The script starts off using induction on m. This produces two subgoals: the base and inductive
cases. Then we use s <;> t , a tactic combinator which reads “apply the script t to all goals
produced by s”. We solve both goals using the simplifier simp [add, *] . The simplifier is an
automated proof search tactic based on rewriting. It tries to rewrite by all lemmas tagged with
the @[simp] annotation. Tagging succ_add means that it too may be applied in subsequent
proofs.

The proof strategy looks like it will work more generally. We can abstract its syntax as a macro
and use it to establish other facts.

macro "nat_induction" n:ident : tactic =>
`(tactic| induction $n <;> simp [add, *])

@[simp]
theorem zero_add (n : Nat') : zero + n = n := by

nat_induction n

theorem add_comm (n m : Nat') : n + m = m + n := by
nat_induction n

Evaluation of tactic scripts is triggered in the frontend upon encountering the by keywords.
It follows the metaprogram interpretation strategy of fig. 4.2 analogously to #eval .

In the next chapter we introduce, and innovate on, the Lean 4 user interface.
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5 An extensible user interface for Lean 4

5.1 Introduction
Interactive theorem proving (ITP) distinguishes itself from other approaches to formal meth-
ods by structuring proof construction as a feedback loop between a human and a machine.
Whether by filling typed holes in a partial term (Agda, Idris) or by issuing meta-level instruc-
tions in a tactic-based framework (HOL, Isabelle, Coq), users tend to develop proofs incre-
mentally. At each step, the system displays the goals which remain to be proven and the
user responds with a further refinement of their proof until there are no more goals left. This
loop can be viewed as a dialogue between the user and the ITP system. Yet compared to
human-to-human communication, modes of human-computer interaction available in today’s
general-purpose theorem provers are limited in form and in referentiality.

They are limited in form by being exclusively text-based. Text serves its purpose well: it
is simple to process, supported in every system configuration, and universally understand-
able. Nevertheless, textual representations are only one way of displaying formal processes,
statements, and their proofs. Cognitive science researchers have long suspected that external
representations of concepts and objects outside the mind (for example a drawing on a piece of
paper, or the physical disks in a Tower of Hanoi puzzle), complementing internal representa-
tions within the mind, are not merely an aid but rather an integral component of cognition
[107]. Restricting the external representations available in ITP systems to only be text is thus a
restriction on thewaywe think [95]. For instance, diagrammatic representations group related
information together in ways that sequences of words simply cannot [53]. Since mathemati-
cians and computer scientists rely on graphical calculi and processes such as diagram chases
[99], computer mathematics should naturally support graphical representations.

Interactions are furthermore limited in referentiality in that we cannot refer to the objects
that a displayed representation signifies by interacting with it directly. This is because the
representations do not “remember” what they are representations of. Suppose for example
that Alice and Bob are collaborating on a proof, using natural language and a blackboard.
Suppose Bob attempts to commute 𝑥 past 𝑦 in the ring 𝑅 but Alice notes that this cannot be
done because 𝑅 is not known to be commutative and one may not assume that 𝑥 ⋅ 𝑦 = 𝑦 ⋅ 𝑥.
At this point, Bob may respond by referring directly to 𝑅 or to the term 𝑥 ⋅ 𝑦 and asking Alice
for further facts about these objects in order to understand the issue and make progress on
the proof. This illustrates that in dialogue, it is natural to request actions on an object under
consideration by referring to it; dialogue is referential.

But replace Alice with an ITP system and suppose the corresponding message from Alice to
Bob is that an instance of the CommRing typeclass couldn’t be synthesized for the type R .
To obtain detail on why this failed, the best Bob can generally do is copy-paste the offending
type into a separate command, either to re-run the failing operation with more verbose output
settings, or to print some extra information about it. Such interruptions are a source of friction
which obstructs reasoning about the mathematical objects in question. Copy-pasting is only
necessary because the displayed typeclass synthesis error is inert text which has “forgotten”
details of the failure. The ITP feedback loop is thus not so much a dialogue as it is a sequence of
disjoint request-response pairs. Had the system stored an association between the displayed
error and input data involved in the failure instead, Bob would be able to inspect this data by
interacting with the error message directly.

Failure of referentiality extends beyond the proof refinement loop, generally limiting the
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amount of information carried by messages originating in all components including parsing,
type inference, proof search, decision procedures, and so on. Since in contemporary proof
assistants these components assemble into deep and interconnected stacks, understanding the
behaviour of any single component (not to mention emergent phenomena arising from mul-
tiple components in combination) can be a serious challenge.

We will show that simply keeping better track of references can improve the state of things.
Following Ciccarelli [34, 30], we call reference-preserving UI elements presentations. A pre-
sentation is a visual or textual display 𝐷 of an object 𝑋 with a link back from 𝐷 to 𝑋. Thanks
to the link, the presented object 𝑋 can be acted upon in various ways by interacting with 𝐷.
In our example, Bob could interact with a presentation of the typeclass inference error (by
clicking on it or using another input device) in order to obtain more information about R or
CommRing , to jump to their definitions, or to carry out other operations on them. Failure of
referentiality can be restated as noting that some UI element is not a presentation.

5.1.1 Contributions

We report on the design and implementation of a user interface (UI) for the Lean 4 theorem
prover [71], of an associated ProofWidgets 4 library of UI components27, as well as of support-
ing features in the metaprogramming framework and in the prover itself. Our system aims
to enable more natural and efficient interactions with the prover by combining the following
features:

• Displays of arbitrary form. We build on HTML5 and the web platform as the un-
derlying technology to make visualization easier. Packages from the rich JavaScript
ecosystem may be imported and used in the UI. For instance, in section 5.3.1 the Pen-
rose [105] library is used to visualize mathematical objects.

• Referential presentations. UI components keep track of, and may act on, the objects
they signify. For example, expressions displayed in the UI can be hovered over to see
their types and explicit forms (section 5.2.1); and goal states can be interacted with in
order to make progress on proofs (section 5.3.3).

• User-extensibility with reusable components. The interface can be modified and
extended by users, in Lean itself and in JavaScript. Builtin and user-defined components
may be composed in arbitrary ways.

• Live, interactive displays. UI components can be used immediately, in the same Lean
file they are defined in, with changes reflected in the UI in real-time.

• On-demand computation. Our presentations are reactive in that they compute lazily,
in reaction to requests from the user. We can explore large objects such as computation
traces (section 5.2.1) by displaying only the relevant parts without processing the rest.

• General-purpose design. Like Lean itself, the UI and ProofWidgets are not tailored
for any specific domain. They enable a variety of applications besides logical reasoning
such as plotting, 3D visualisation, and interactive simulations.

While interfaces supporting subsets of the above have been developed, our system appears to
be the first to support all of them in a cohesive way. We give a detailed comparison to other
systems in section 5.5. The UI is part of the core Lean distribution and has been deployed

27https://github.com/EdAyers/ProofWidgets4/tree/itp23
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widely to hundreds of active users, whereas the ProofWidgets package can be imported for
additional functionality. The UI has been integrated in the VS Code extension vscode-lean428
as well as in the Lean 4 Web29 online editor.

Outline. In section 5.2, we introduce the user interface and its interactive features. In sec-
tion 5.3, we demonstrate how to extend the interface by means of several examples. In sec-
tion 5.4, internals of the system and aspects of implementation are discussed. We cover related
work in section 5.5 and conclude in section 5.6.

5.2 The user interface
The layout of the Lean 4 user interface does not diverge from the two-pane view of the world
popularized by ProofGeneral [8]. In this layout, the first pane in the prover UI is a text editor
with the proof script, whereas the second infoview pane displays additional information. This
includes the current goal state, errors, andmessages for the open buffer. All the UI components
and extensions which we will discuss are displayed within the infoview. An example infoview
state is shown in fig. 5.1.

Figure 5.1: The Lean infoview embedded in vscode-lean4. Two tactic-mode goals (Tactic state)
at the text cursor are shown (1). Differences in the goals’ types and local contexts with respect
to the previous state are highlighted (2). A second location containing a term goal (Expected
type) is pinned (3).

While the layout is as in ProofGeneral, we do not follow its waterfall style of proof script
management. In the waterfall style, there is a checkpoint to separate the part of the document
which had been checked by the prover from that which had not. The checkpoint is advanced
manually as an intentional action by the user. It recedeswhen changes aremade to the checked
part. Instead, similarly to Isabelle/PIDE [103], Lean adopts a ‘stateless’ approach that checks
the entire buffer in real-time. Under the hood, the system keeps track of immutable snapshots
of past and present versions of the document, with new snapshots generated whenever the
user edits the script. Contents of the infoview are determined by the latest snapshot and the
current text cursor position.

28https://github.com/leanprover/vscode-lean4/
29https://lean.math.hhu.de/
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When the cursor is inside a tactic-mode proof, the goal state at that position is displayed.
In tactic proofs, differences between subsequent goal states are highlighted in green or red
depending on whether a subexpression was just added or is about to be removed, respectively.
This can be useful to see at a glance how a step has impacted, or will impact, the proof state.
For instance when proving ∀ (n : Nat), 0 + n = n by induction on n , in the base case n
becomes Nat.zero and this change is highlighted as in fig. 5.1. The diff is computed using a
heuristic algorithm operating on kernel-level expression trees. Furthermore when the cursor
is over a typed hole (or a finished term), the term goal is also displayed. The term goal is the
expected (or actual) type and local context of the typed hole (or term). One advantage of the
waterfall approach is that the checkpoint can be used as an additional cursor which displays
the goal state in one part of the file while we go on to work on another part. We generalize this
by allowing one or more text locations to be pinned in the infoview. Information about pinned
locations is displayed alongside information about the text cursor location. Pinned displays
update in real-time which is especially useful to see how changes at one point in the file affect
a proof state or evaluation further down.

5.2.1 Expression and trace presentations

The infoview’s design aims to support pervasive interactivity by displaying most objects as
presentations. For instance, every displayed expression, and each of its subexpressions, stores
a reference to the type-theoretic term it corresponds to. This can be used to learn additional
facts about an expression appearing anywhere in the infoview (in a goal state or an error
message or a custom component) by clicking on it or hovering over it as in fig. 5.2. Users can
learn expressions’ types, see the values inferred at implicit arguments, and jump to symbols’
definitions. In this way presentations increase information locality bymaking it retrievable
alongside a display of the relevant object. No extra data is computed eagerly; pretty-printing
the type of every subexpression, for example, would not be cheap in any sizable goal state.
Instead, the link from presentation to underlying object is a memory reference which enables
the UI to fetch information from the language server lazily when the user requests it (see
section 5.4).

One way to frame the addition of presentations is as a kind of refinement process. We imagine
starting from a non-referential user interface appearing in a particular scenario. We then ask:

• Which objects are signified by which parts of the UI?

• Given that UI 𝐷 signifies object 𝑋, which actions applicable to 𝑋 could we carry out
using 𝐷?

Guided by the answers, we can enrich interfaces for programming and proving with new in-
teraction points. Consider messages produced by the prover: in Lean, structured traces are a
feature of the metaprogramming API which collates messages produced during program exe-
cution into a tree-shaped record, with edges corresponding to user-defined execution bound-
aries. For example, the backtracking Prolog-like typeclass search procedure [90] of Lean 4
can be traced, with branches representing attempted and abandoned instances. Many search-
based tactics produce traces. Traces of expensive procedures can have thousands of nodes,
making them unreadable and slow to pretty-print if displayed in full. Similarly to inferring
expression types in the UI, we solve this problem by expanding and pretty-printing subtraces
lazily, in reaction to user requests. This means we can explore branches through large trace
trees limited only by the memory needed to store the trace data rather than the CPU time
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Figure 5.2: The numeral notation 0 : Nat is resolved via typeclass search. A structured trace
(1) of the search is explored. A presentation of a pretty-printed typeclass instance is clicked
on to display its type (2). Subexpressions within an expression can be selected following its
tree structure.

needed to pretty-print it all. In fig. 5.2, an example trace of typeclass instance search is shown.
Presentations compose so that the structured trace may contain interactive expressions and
other interactive components. In the future we hope to also provide a method of filtering and
searching through the trace tree.

Presentations interactwell with other language features including syntax extensions. In fig. 5.3,
an embedded domain-specific language (EDSL) is used to write down an HTML tree. The tree
has an underlying expression of type Html which is presented in the infoview using the same
EDSL.

Figure 5.3: A JSX-like syntax for writing HTML trees inline is used to write down a term of
type Html in the editor. The ♯check command is used to inspect it in the infoview (1). The type
Html has an associated pretty-printer which emits the same custom syntax. The pretty-printer
sub-output <b>Lean!</b> is a presentation of the subterm Html.element "b" ♯[] ♯["Lean!"]
which can be inspected by hovering over it with the mouse (2).

Since presentations are the default, producing them requires no extra effort from the tactic
writer. For example, the following snippet defines and then uses a custom command with
interactive output. It does this by first using elab , a meta-level command that defines new
commands with a given syntax, in this case #check_nat t where t can be any term. The new
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command is immediately available for use and is invoked with 37 as input.

import Lean.Elab.Command
open Lean Elab Command

elab cmd:"#check_nat " t:term : command => liftTermElabM do
let e : Expr ← Term.elabTerm t (mkConst ``Nat)
-- The string-like literal m!".." directly embeds expressions {..}.
logInfoAt cmd m!"{e} has type {mkConst ``Nat}"

#check_nat 37
The implementation of #check_nat parses and typechecks the term, expecting its type to be
Nat , and then emits a message. It does this using logInfoAt which associates a message with
a syntactic span, in this case the span of the #check_nat keyword. Just like standard errors and
warnings associated with a syntactic range, the message is displayed in the infoviewwhenever
the text cursor is on this span. Since the message directly stores kernel-level expressions (of
type Expr ), they are automatically displayed as interactive presentations.

5.3 ProofWidgets 4: programmable, referential interfaces
While the builtin presentations of expressions, goals and messages provide a common inter-
face for all uses, the design’s main strength is its extensibility and composability. Users can
build domain-specific interfaces dubbed user widgets. A user widget is a ReactJS UI compo-
nent capable of invoking Lean metaprograms and editing the proof script. User widgets can
implement new presentations and new ways of interacting with the prover. User widgets are
usually displayed by related tactics or commands – for example the HTML display in fig. 5.5
is stored by the #html command. Storing a widget is analogous to how messages are emitted
with logInfoAt : informally, instead of stating “there is an error or warning at this syntactic
span”, we state “there is a user widget at this syntactic span”. Both the user interface and the
associated tactic code can be developed in tandem alongside each other, allowing for quick
development cycles.

In this section we will consider user widgets that extend the goal display in various ways.
Here referentiality – the idea that displays should store references to objects they signify –
is also core to our approach. Recall that the object displayed by an expression presentation
(section 5.2.1) is an expression together with its local context (approximately corresponding
to a judgment Γ ⊢ 𝑡 ∶ 𝑇 of the type theory). Executing with access to that allows us to, for
example, infer its type and display it to the user. Similarly, widgets extending the goal display
can reference the current goal state.

5.3.1 Diagrams for algebra

In fig. 5.4 the goal is an implication between statements in the language of category theory.
We choose to display it as commutative diagrams connected by implication arrows. Here our
support for importing JavaScript libraries shines – while it may seem like a trivial engineering
choice, the ability to build on the immense NPM software ecosystem dramatically cuts down
development time. One such library, Penrose [105], expresses general mathematical diagram-
ming as an optimization problem. The user writes a specification describing which shapes the
diagram should include (in dsl and sub files) as well as which constraints on their layout will
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make the diagram sound and beautiful (in a sty file). An energy minimization solver then runs
and an SVG image is generated. The ProofWidgets component wrapping Penrose is compos-
able in that it may include further components (in fig. 5.4 labels on objects and morphisms
are interactive expression components) and dually may become part of a larger display. We
hope it will prove useful to working algebraists. While the display demonstrated here does
not act on the goal, proof methods such as diagram chases could also be implemented with
ProofWidgets. We expand on this in section 5.3.3.

Figure 5.4: A target type in the language of category theory is selected. The statement is
displayed as a sequence of commutative diagrams connected by implication arrows.

From the user’s perspective, implementing a display such as this one proceeds in two steps.
First, we wrap Penrose into a reusable ProofWidgets component. The Lean definition of the
PenroseDiagram component is as follows30:

structure PenroseDiagramProps where
embeds : Array (String × EncodableHtml)
dsl : String
sty : String
sub : String
deriving RpcEncoding

@[widget_module]
def PenroseDiagram : Component PenroseDiagramProps where

javascript := ... -- Details omitted
Values of type Component Props serve to encapsulate JavaScript user widget implementations
as Lean definitions. The index type Props specifies a Lean encoding of the type of data ex-
pected by the component. In this case Props = PenroseDiagramProps contains fields describing
a specific diagram ( dsl / sty / sub ) as well as other widgets to nest within it ( embeds ). To give
another example, one variant of the interactive expression component has type Component ExprWithCtx
where ExprWithCtx is an expression together with its local context.

30Details are highly likely to change as the library evolves.
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The field javascript contains a JavaScript implementation of the component. To a first ap-
proximation, it could be viewed as having dynamic type Props → HTML . It may be written
inline but it is preferrable to point at a file on disk. In the latter case one may use tooling
we have developed to integrate building TypeScript files into the build of a Lean package us-
ing the Lake (Lean Make) build system. Communication with the infoview is set up using
the @[widget_module] attribute and the deriving RpcEncoding annotation. @[widget_module]
saves the JavaScript code in a global storage fromwhich it can be retrieved for execution in the
infoview, whereas deriving RpcEncoding generates code to serialize and deserialize values of
a type, in this case PenroseDiagramProps . This is necessary to support distributed computation
(see section 5.4).

More complex visualizations are enabled by building on further JavaScript libraries as in
fig. 5.5. For example, a component integrating a plotting library could be a starting point
for plotting functions in a formally verified way [69]. Finally, we note that this first step
of wrapping JavaScript functionality in a Component can be skipped when the necessary UI
component already exists. Thus it is desirable to write reusable components. For instance,
PenroseDiagram is not specific to algebra but supports general constraint-based diagramming;
we use it again in fig. 5.7.

Figure 5.5: The Rubiks component loads the three.js library in order to create a 3D visual-
ization of a Rubik’s cube. An HTML tree <Rubiks seq={eg} /> containing an instance of this
component is passed to the ♯html command. This command can be used to render HTML
trees in the infoview with a user widget (HTML Display). The sequence of rotations eg is
determined by the Lean script.

In the second step, we write a Lean metaprogram to display the user widget. There are many
ways to do this in general. Since fig. 5.4 uses an Expr presenter, we will describe this ap-
proach. Like most provers, Lean features an elaborator which translates surface-level (vernac-
ular) syntax into fully explicit terms of the underlying type theory by filling in implicit ar-
guments, finding typeclass instances, resolving ambiguous notation, inserting coercions, and
so on. Lean 4 also contains a delaborator which essentially does the inverse – it attempts
to make an explicit term human-readable by heuristically removing detail while ensuring
that the elaborator can still process the resulting vernacular. Eliding detail, the delabora-
tor has type Expr → MetaM Term where Expr is the type of kernel terms, Term the type of
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abstract syntax trees corresponding to vernacular terms, and MetaM an appropriate monad.
By composing with a pretty-printer for syntax trees we get the full pretty-printer of type
Expr → MetaM String .

An Expr presenter is a ProofWidgets metaprogram which can be viewed as one generaliza-
tion of the above process. Rather than producing strings, we output HTML trees which may
include user widgets. As the name suggests, it is aimed at producing presentations of mathe-
matical objects. The set of Expr presenters is user-extensible. We dispatch to the appropriate
one based on characteristics of the given Expr such as using a known constant at the top level.
This echoes the general design philosophy of Lean 4 as a tower of abstractions: some uses of
ProofWidgets are expressed mostly simply by writing an Expr presenter, and for those that are
not it is possible to drop to a lower level of abstraction.

To use this framework in our example, we wrote a Penrose specification for general com-
mutative diagrams, as well as an Expr presenter that translates equalities of morphisms in a
category into diagram descriptions which use that specification. A representative code frag-
ment follows.

/-- Expressions to display as labels in a diagram. -/
abbrev ExprEmbeds := Array (String × Expr)

open scoped Jsx in
def mkCommDiag (sub : String) (embeds : ExprEmbeds) : MetaM EncodableHtml := do

-- Pretty-print kernel terms into interactive labels for the diagram.
let embeds ← embeds.mapM fun (s, h) =>

return (s, EncodableHtml.ofHtml
<InteractiveCode fmt={← Widget.ppExprTagged h} />)

return EncodableHtml.ofHtml
-- Instantiate a PenroseDiagram using a JSX-like EDSL.
<PenroseDiagram
embeds={embeds}
-- Penrose specification of general commutative diagrams.
dsl={include_str "commutative.dsl"}
sty={include_str "commutativeOpt.sty"}
-- The particular diagram we are given.
sub={sub} />

... -- Definitions of commSquareM? and commTriangleM? elided

/-- Present an expression as a commutative diagram. -/
@[expr_presenter]
def commutativeDiagramPresenter : ExprPresenter where

userName := "Commutative diagram"
present type := do

-- Attempt to deconstruct `type` into a commutative square or triangle
-- and use `mkCommDiag` if successful.
if let some d ← commSquareM? type then
return some d

if let some d ← commTriangleM? type then
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return some d
return none

5.3.2 Selection contexts

On a blackboard, we can underline and point to expressions and objects in order to highlight
the relevant parts of a formula or depiction when explaining an argument. Analogously, a se-
lection context is a subset of (subexpressions of) goals, hypotheses, and (subexpressions of)
hypothesis types appearing in a goal state. The user specifies it by shift-clicking on the respec-
tive elements in the infoview. The current selection context is passed as input to user widgets
that pertain to the goal. In fig. 5.4 just the target type was selected. The withSelectionDisplay
combinator, which we use there and in fig. 5.6, is a tactic combinator that associates a general-
purpose widget with the range of the entire nested tactic script, and then runs the script un-
changed. The widget displays each selected expression using registered Expr presenters (if
multiple presenters apply, a choice can be made in the UI).

Figure 5.6: A balancing function for red-black trees is implemented in balance. Two terms
appearing in the course of a proof about it are selected in the goal and illustrated as trees.

Selecting more than one subexpression can be helpful in comparing differences between these
subexpressions, to figure out what remains to be proven. In fig. 5.6, we copied a balancing
function for red-black trees verbatim from Okasaki [77]. As it turns out, due to overlapping
patterns in the definition of balance, the reduction law one might expect does not hold in all
cases. It does hold when balance is called after inserting one node into a well-formed red-black
tree because in that case, the invariants ensure that no more than one red-red edge exists. In
fig. 5.6, we can see at a glance from their visual representations that the two selected trees
cannot be equal, so an invariant must have been violated. In this way diagrams appearing live
during proof development serve as cognitive aids. The visualization of general red-black trees
uses the react-d3-tree31 library to do most of the heavy lifting and took less than an hour to
prototype. Afterwards, figures from Okasaki’s paper are reproduced by the system with no
further effort.

31https://github.com/bkrem/react-d3-tree
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Finally, rather than using withSelectionDisplay which treats elements of the selection con-
text as independent, users may choose to visualize the selection context as one entity. This
is useful when the global information contained therein can be coherently diagrammed. In
fig. 5.7, two subset relations are relevant to the proof whereas a third one is not. We use
PenroseDiagram together with Penrose’s builtin support for Venn diagrams to display the two
relations which imply the conclusion. The combinator withVennDisplay used here works sim-
ilarly to withSelectionDisplay except in that, rather than emitting the general-purpose selec-
tion display widget, it produces an instance of a Venn diagram specifically.

Figure 5.7: A subset of hypotheses relevant to the proof is selected. The set relationships are
visualized in one Venn diagram.

5.3.3 Contextual suggestions and graphical calculi

Beyond providing static displays of goal states guided by the selection context, user widgets
may invoke Lean metaprograms, access proof states, and edit the proof script. Since metapro-
grams can also display user widgets, the link between widgets and metaprogramming is bidi-
rectional. It is possible to make progress on proofs through the UI.

One application of this functionality could be proof by pointing [18, 19] which, to a first ap-
proximation, demands that the UI should allow guiding proof synthesis by pointing (with a
mouse, for example) at the term to use, decompose, or otherwise manipulate in the next proof
step. Since the selection context already contains terms which the user pointed out, a proof
by pointing widget would only need to respond to clicks by inserting appropriate tactics into
the proof script. On the other hand Paulson argues [81] that certain specific variations of this
idea, such as guiding term rewriting by hand, are better served by powerful automation. Ul-
timately some combination of both appears most likely to be useful. For example, a piece of
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Sledgehammer-like automation [21], or a system based on recent advances in deep learning
[52], could suggest proof steps that make progress on the proof in a manner related to the
current selection context. ProofWidgets avoids committing to any single approach by remain-
ing agnostic about which actions or graphical proof methods are available, instead leaving
the choice to users and their particular applications. What we hope to achieve is to make the
implementation of any such method as frictionless as possible by providing a library of basic
components. We envision it being used for contextual suggestions and graphical calculi.

Contextual suggestions are provided by suggestion providers. These aremetaprogramswhich,
given a goal state and selection context, return a list of relevant or potentially useful tactics
that the user may then pick from. For example, proof by pointing implementations could be
viewed as suggestion providers which suggest tactics to carry out the desired goal transforma-
tion. Like the set of Expr presenters, the set of suggestion providers is user-extensible rather
than fixed. In fig. 5.8 we demonstrate how a user widget presenting a suggestion can oper-
ate. In Lean, the conv tactic mode allows “zooming in” on a subexpression of the target or a
hypothesis type in order to apply local transformations. In the figure, a suggestion provider
returns a conv tactic which would put the selected subexpression in focus. The tactic is then
displayed in the infoview and may be inserted by clicking the button.

Figure 5.8: A subterm -a + a + -a of the goal in a proof about groups [37] is selected. The
conv user widget by Robin Böhne and Jakob von Raumer displays a button suggesting a tactic
which would zoom in on the selected subterm. Clicking the button inserts the tactic into the
proof script.

As we observed in section 1, diagrams serve as cognitive aids in a variety of mathematical
pursuits. Graphical calculi are distinguished from general depictions by being active, mean-
ing that manipulations of the depiction correspond to steps in a proof; sound, meaning that
valid manipulations are valid proof steps; and ideally complete, meaning that every proof in a
chosen class can be expressed graphically. Examples include the Reidemeister moves on knot
diagrams [84], manipulations of string diagrams [49], or more specific variants in category
theory such as ZX-diagrams [35], Globular proofs [12], and homotopy.io [85] proofs. A formal-
ization of any of these graphical languages could be accompanied by a ProofWidgets component
which translates manipulations of a graphical proof state in the infoview into tactic steps in
the Lean proof script.
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5.4 Implementation
A complete setup consists of three components. Figure 5.9 outlines an example interaction
between them.

The language server is written in Lean. It communicates with the editor and with the in-
foview via the Language Server Protocol (LSP32). Through the LSP it provides standard
code intelligence facilities – go-to-definition, type hovers, autocompletion, etc. Proof
states and related objects such as terms of the type theory are stored in the server.

The infoview is written in TypeScript. It is a self-contained web application displayed by the
editor. Client-side JavaScript code from user widgets executes here.

The text editor is chosen by the user. Besides storing the proof script, the editor connects
to the server, manages the infoview, and mediates between them. To support both, the
editor must be capable of communicating via LSP and displaying web content. For ex-
ample, the Visual Studio Code extension vscode-lean4 embeds the infoview in a webview
pane which it has control over.

Language
server

Text
editor Infoview

1. Cursor
moved to 4:5.

2. Widgets at
4:5?

3. Widgets at
4:5 are […].

Figure 5.9: In order to determine which user widgets to show in the infoview, a sequence of
messages is exchanged every time the text cursor moves. First, the editor informs the infoview
about the new cursor position (here line 4, column 5). Then, the infoview queries the language
server for the user widgets that should be shown at that position. Finally, the server replies
with a list of user widgets. Its contents are then displayed in the infoview. The editor acts as
a proxy for infoview–server communication, indicated by dashed lines.

Remote procedure calls. The infoview and the server are independent programs which
may not even execute on the same computer. Indeed, this happens when Lean is used over
SSH or in a cloud-based service such as Gitpod. In these cases, the editor and infoview exe-
cute on the user’s local machine whereas the server is remote. Certain objects stored in the
server’s memory should not be serialized and sent to the infoview over the network due to
their size – for instance, the environment (which stores known theorems, definitions, meta-
data, etc) can weigh several gigabytes in sufficiently large proof developments. Consequently,
metaprograms which operate on heavy objects must execute in the server.

Nevertheless, user widgets need to run such metaprograms, for example to try a tactic or infer
an expression’s type: both of these need access to the environment. Therefore widgets must be
able to invoke methods on the server. To enable this, we designed a foreign function interface
for Leanwith support for remote calls from JavaScript. The interface is effectively an extension
to LSP. The LSP is based on JSON-RPC33, a simple protocol for remote procedure calls which

32https://microsoft.github.io/language-server-protocol/
33https://www.jsonrpc.org/
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encodes argument and output data as JSON. For example, to request a symbol’s definition, the
editor invokes the textDocument/definition method by sending a JSON record of the file, line,
and column where an instance of the symbol occurs. The return value sent back by the server
is the definition’s location. To support arbitrary other functionality, we made the registry of
procedures that can be invoked on the server via JSON-RPC user-extensible. To mark a Lean
procedure as remotely callable, one annotates it with @[server_rpc_method] . A procedure so
marked must be of the type A → RequestM B where RequestM is a monad with access to server
state and A,B are JSON-serializable types. (De)serialization routines are autogenerated by
annotating a type definition with deriving ToJson, FromJson or deriving RpcEncoding .

Remote references. When making multiple remote calls, widgets need to pass data be-
tween the metaprograms they invoke, for example to compute an expression’s explicit form
𝑒𝑓 and then infer the type of a subexpression of 𝑒𝑓 (as do the two popups in fig. 5.2). Pass-
ing data is non-trivial because widgets execute on the client whereas metaprograms run on
the server. Since the relevant data is not serialized, client-side code needs a way of referring
to objects stored in the server’s memory. This is achieved by allowing JSON-RPC payloads
to contain references to server-side objects. Given a Lean type α , we write WithRpcRef α
for the type of references to values of type α . Our implementation has special support for
WithRpcRef markers which are serialized as UID strings. To ensure type correctness, i.e., pre-
vent a reference of one type from being converted to a reference of another type, runtime type
information is stored in the server and checked on any remote reference access.

Remote references are the backbone of our implementation of presentations. One use is found
in expression presentations. Recall from section 5.3.1 that Lean features a delaborator, a sys-
tem for converting kernel-level expressions back into syntax trees. To implement expression
presentations, the delaborator has been extended with the ability to tag syntax subtrees with
references to subexpressions of the original expression. These references are encoded using
WithRpcRef . The exact tagging strategy has been described by Ayers and coauthors [11].

Allowing the client to refer to server-side objects presents us with a classic memory manage-
ment problem – when is it safe for the server to delete objects for which remote references
have been created? Conveniently, both Lean and JavaScript are garbage-collected languages.
Using a FinalizationRegistry34 we can instruct the JavaScript garbage collector to send amem-
ory release instruction to the server when it collects the corresponding client-side reference.
This is cooperative and may fail in case of client-side errors: a client which does not release
server-side memory could cause it to leak. While we can’t prevent this in general using only
server-side mechanisms, we require the client to regularly send keepalive messages inspired
by the Transmission Control Protocol [22]. Upon not seeing any keepalives for sufficiently
long, the server frees all remote references. This eliminates a class of disconnection- and
hang-related memory leaks.

Dynamic code delivery. User widgets are required to be self-contained JavaScript mod-
ules35. This is considered a low-level target – users may employ any libraries and toolchains
they need (for example TypeScript), as long as the eventual compilation or transpilation out-
put matches the required format. Modules are registered in Lean using the @[widget_module]
annotation. Upon being so annotated, modules are stored in a content-addressed cache ac-

34https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/FinalizationRegistry
35https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
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cessible to the server. In order to display a particular user widget, the infoview fetches its
source module from the cache using a remote procedure call, and then dynamically loads this
source. User widgets execute in a runtime environment including the @leanprover/infoview
library which they may import. This library exposes builtin functionality of the infoview (it
can be used to display expression, structured trace, or goal presentations) as well as methods
of communicating with the editor (these can be used for instance to edit the proof script or
place another Lean file in focus) and services for making remote procedure calls from user
widgets.

5.5 Related work
Our work descends directly from graphical tooling for Lean 3 (the previous version of Lean),
notably ProofWidgets 3 [11] and the previous infoview. ProofWidgets 4 is a complete redesign
and reengineering. Compared to ProofWidgets 4, the previous version was not able to incor-
porate JavaScript libraries which we make heavy use of; used purely server-side rendering
which resulted in disruptive latency approaching seconds [70] in distributed settings where
code editor and prover reside on different machines (e.g. cloud-based services such as Gitpod);
and could not handle asynchronous events which are necessary to invoke long-running com-
putations from the UI. Compared to the previous version we have lost (and hope to regain)
the ability to program UI event handlers directly in Lean rather than in JavaScript. We expect
this to become feasible when a JavaScript or WebAssembly backend is developed for Lean.
The previous infoview did not support goal diffs, structured traces, interactive messages, or
selection contexts.

The work of Mehnert, Christiansen, Korkut, and coauthors on idris-mode [68, 30, 51] encour-
aged us to dream of richer programming environments, and suggested presentations as a use-
ful concept. idris-mode is primarily limited by the practical difficulty of embedding web-based
and non-textual interfaces in Emacs with which it is tightly integrated.

User interfaces for theorem provers can be broadly categorized along two axes. Along one,
they can either be built for a specific domain and use case only, or they can be tool-making tools
designed for extensibility. Along another axis, they can either be integrated with a special-
purpose formal system such as a synthetic axiomatization of geometry, or they can support a
general foundation. Our interface is designed from the ground up to fall on the right of both
axes, that is to support general interface extensions in a general-purpose theorem prover.
Existing work tends to place towards the left of at least one of the axes, with many tools
excelling at providing fixed sets of UI functionality.

CtCoq [16] and its successor Pcoq [5] were early systems which focused on displaying for-
mulas and proofs in natural language with mathematical notation, on structured editing of
proofs, and on proof by pointing. Some extensions to Pcoq have been developed by its au-
thors, notably GeoView [17], a display for statements in plane geometry. Nevertheless Pcoq
does not appear to support general user-extensibility. The GeoProof [74] project improved
on GeoView by supporting proof construction, rather than just viewing, in the geometric dis-
play. However, GeoProof was developed as a standalone application that did not use Pcoq.
Robert’s PeaCoq [86] focuses on visualizing proof trees and steps, but not the mathematical
objects appearing therein such as the diagrams of fig. 5.4. The recent Actema project [38] aims
to extend the interactions available in proof by pointing to drag-and-drop interfaces. KeY [2]
and KeYmaera X [43] provide interfaces specific to software verification and purpose-built
logics. The Incredible Proof Machine [25] is a browser-based diagrammatic prover. We hope
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that our framework enables the creation of similar purpose-specific tooling for the Lean proof
assistant.

A recent interface which does aim at general-purpose proving and domain-specific extensions
is that of HolPy [106]. Compared to ProofWidgets 4, at this moment HolPy stresses proof by
pointing and LATEX display but not general visualization of objects or computations.

Another class of interfaces and tools are web-based ones including jsCoq [6] and Clide [58].
The comparison here is subtler –while jsCoq in particular allows buildingwebsites intermixing
Coq snippets and UI components, it doesn’t seem to provide a way for these components to
invoke the metaprogramming API and directly manipulate proof state. It may be that the
potential for powerful extensions is there, but was simply never realized in practice. The
recent Alectryon [83] supports proof archival in Coq and in Lean (via LeanInk [27]) by storing
recorded proof states alongside beautified proof scripts. In contrast, our system serves proof
development by providing a live display with a variety of graphical representations. Wewould,
however, like to store a static form of these representations in LeanInk outputs in the future.

Other systems intersect with our featureset in various ways. ProofGeneral [8] used to support
expression presentations, but only for the LEGO prover [57]. Feasibility of real-time asyn-
chronous processing was demonstrated in Isabelle/PIDE [103]. Both PeaCoq and Coq itself
contain similar goal diffing capabilities to ours. Multi-representation GUIs for proof assistants
were pioneered in the 1990s by the 𝐿Ω𝑈𝐼 [91], HyperProof [14] and XBarnacle [56] projects.

Finally, we are generally inspired by Engelbart’s (to-date not realized!) vision of human intel-
ligence augmented through computer interfaces [40], and the systems of yore which followed
it including Smalltalk [44].

5.6 Conclusion
We designed and implemented an extensible user interface for the Lean 4 theorem prover
together with ProofWidgets 4, a supporting library of metaprograms and UI components. The
interface is based on presentations: UI elements that store references to the objects they are
displaying. Presentations enable detailed introspection of tactics and systems comprising the
prover. Extending the interface with ProofWidgets 4 empowers users to work with a variety
of interactive, graphical representations. Building on the JavaScript ecosystem enables quick
prototyping. The framework’s domain of applicability includes exploring computation traces,
symbolic visualization and exploration of mathematical objects and data structures, custom
interfaces for tactics and tactic modes, data visualization, function plotting, and interactive
simulations. Supporting not only expert users, it could be used in education to build interactive
textbooks and tutorials. We demonstrated example user widgets diagramming mathematical
data and suggesting possible proof steps from within the UI.

In tune with the overall design philosophy of Lean 4, every layer of the visual stack can be
extended. We provide a tool-making tool which enables the creation of rich environments for
program and proof in science and mathematics.
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