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Abstract

Typechecking algorithms play an important role in bridging the gap between the theory and
implementation of dependent types. A metatheoretic property which has historically been
found to enable practical proof assistants is decidability of judgmental equality. Although it is
widely believed that most mainstream theories such as the Calculus of Inductive Constructions
enjoy decidable conversion, this is rarely proved beyond a sketch and almost never formally
due to how heavyweight the proofs tend to be. Recently, Abel, Öhman and Vezzosi presented
an efficient conversion checking algorithm based on weak-head normalisation together with
a decidability proof using Kripke logical relations. The proof is mechanised in Agda, boot-
strapping one type theory from another. While their object theory is already fairly extensive,
it misses two important constructs – the terminal/unit type and dependent sum types. In this
project, I add those and extend the algorithm as well as the formal proof to establish decidabil-
ity for the new theory. The resulting language includes 𝜂-extensional Π and Σ types, the type
of natural numbers, the unit type, the empty type and a Russell-style universe. The project is
an exercise both in semantics of type theory and in working with an existing proof codebase.
The proof methods used have relevance even for theories which do not enjoy decidability,
because the result sits atop a mountain of widely applicable abstraction.

Total word count: 10,897
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1 Introduction

1.1 Moving target
The original goal of this project was to investigate the metatheory of XTT [43, 44], a new type
theory due to Sterling, Angiuli and Gratzer. In particular, to prove that type conversion in
XTT is decidable, which the authors conjecture but don’t establish. I discuss why decidability
is useful in 1.2, but why for XTT specifically? XTT takes ideas from the worlds of Homotopy
TypeTheory [47], its cubical variants [17], as well as the focus on observations of Observational
TypeTheory [11, 13] and applies them back to the older ideal of computationally well-behaved,
extensional identity types [32]. It achieves this in an arguably more foundational manner than
other work – function extensionality is a consequence rather than a postulate of their setup.

We decided to carry out the proof by extending an Agda codebase [8] due to Abel, Öhman and
Vezzosi (AÖV ). While these kinds of proofs have historically been massive, AÖV take several
steps towards decreasing the workload. Alas, there turned out not to be a clear path to cubical
metatheory using our chosen tools in the available timeframe of 6 months or so. So, the target
switched to Observational TypeTheory, which is closer to being expressible as an extension of
the theory that AÖV formalised. But even that proved to be so muchwork that I only managed
to formalise a small step on the road to a type conversion algorithm for OTT – the unit type
and dependent sums. The final contribution, despite being rather modest, required over 4,000
new lines of Agda code to express. I call the present type theory 𝜆Σ because it includes Σ
types, among other things.

1.2 Do we even want decidability?
A valid counterargument to insisting that typechecking should be decidable is that in doing so
we compromise on the expressivity of a type theory. By this I don’t mean its proof theoretic
strength but rather how easy it is to write down certain kinds of statements. The canonical
example of a type-theoretic feature which breaks decidability is equality reflection. As the
name suggests, it allows reflecting witnesses of identity of types into judgmental equalities:

Γ ⊢ 𝑃 ∶ 𝑡 =𝐴 𝑢
Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴

In principle, this is quite nice as users can convince the typechecker that two types are con-
vertible by proving it. For example, since one can prove that 𝑥, 𝑦 ∶ ℕ ⊢ 𝑥 + 𝑦 =ℕ 𝑦 + 𝑥, the
typechecker has to recognize this and understand that, for example, 𝑥, 𝑦 ∶ ℕ ⊢ vecℕ (𝑥+𝑦) ≡
vecℕ(𝑦+𝑥), i.e. the type of lists of natural numbers of length 𝑥+𝑦 and ditto of length 𝑦+𝑥 are,
in fact, the same type. This enables a user to freely exchange between them and use a term of
type vecℕ (𝑥+𝑦)where an element of the other type is expected. Of course, precisely because
the typechecker must decide which identities are provable, this makes the algorithm undecid-
able. When our dependently-typed program is taking a long time to check, is the compiler
just slow or is it trying to prove the Riemann hypothesis?

So for practical reasons, we insist on decidability. But the proof of decidability is relevant
even to theories in which it doesn’t hold because in developing it we build up a whole bunch
of useful metatheory which will be discussed shortly.
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1.3 Contributions
The primary contribution is a fully mechanised proof of decidability of type conversion for 𝜆Σ,
achieved by extending the type theory and proof due to AÖV [8] with dependent sum types
and a unit type. The contribution counts out to 71 files changed, 5297 insertions(+), 1323
deletions(-) out of a total 15750 lines of code after the changes. The full Agda development is
available at https://github.com/Vtec234/logrel-mltt/tree/1290bd9eb6804a41b2fb1214c4e2f6a6cbf858ef
as well as the zipped source code archive.

A secondary contribution is this document. Since a detailed walkthrough of the proof is al-
ready available in the work of AÖV, instead of repeating it I attempt to intuitively explain the
high-level structure of the proof. I also discuss some design choices in the formalisation as
well as the principles behind them, explicitly writing down a number of folklore observations.

In chapter 2, I give an overview of how Kripke logical relations can be used to give meaning
to the syntactic constructs of a formal system by considering strong normalization and decid-
ability of 𝛽𝜂-equivalence in the simply-typed lambda calculus. In chapter 3 I summarize the
structure of AÖV’s proof and some of their technical innovations. In chapter 3.1, I describe the
addition of a contractible Unit type and how it propagates through the proof. In chapter 3.2, I
do the same for Σ-types. Finally, I conclude. The full definition of, and conversion algorithm
for, 𝜆Σ are in the appendix.

2 The logical relations model
To see how the semantics of dependent types which we are going to need for the proof is
constructed, let us first consider some properties of a far simpler language, the simply-typed
𝜆-calculus (STLC) with, say, a single base type 𝟙 containing one constant, Γ ⊢ ∗ ∶ 𝟙. STLC is
generally well-behaved, and terms can easily be checked to have a certain type. Here’s one
way to do it in Agda:
_⊢_⇐_ : (Γ : Ctx) (t : Term) (A : Type) → Dec (Γ ⊢ t ∷ A)
Γ ⊢ star ⇐ Unit = yes starⱼ
Γ ⊢ star ⇐ F ▹ G = no λ ()
Γ ⊢ lam t ⇐ F ▹ G
with Γ ∙ F ⊢ t ⇐ G

... | yes P = yes (lamⱼ P)

... | no ¬P = no λ { (lamⱼ P) → ¬P P }
Γ ⊢ lam t ⇐ Unit = no λ ()
Γ ⊢ var n ⇐ A
with isVarInCtx n A Γ

... | yes P = yes (varⱼ P)

... | no ¬P = no λ { (varⱼ P) → ¬P P }
-- Applications are annotated with the argument type to avoid type inference.
Γ ⊢ [ F ] fn ∘ arg ⇐ G

with Γ ⊢ fn ⇐ F ▹ G | Γ ⊢ arg ⇐ F
... | yes P | yes Q = yes (P ∘ⱼ Q)
... | no ¬P | _ = no λ { (P ∘ⱼ _) → ¬P P }
... | _ | no ¬P = no λ { (_ ∘ⱼ P) → ¬P P }

STLC is also strongly normalizing, meaning that the process of applying 𝛽-reduction steps to
a term is eventually going to terminate with a normal form which cannot be further reduced.
This, however, is trickier to prove. Pierce [36, ch. 12] explains the problem well, as does Crary
[37, ch. 6] for the case of when we not only want to evaluate STLC terms but also compare
them for equivalence. The family of proof techniques developed in response to this issue is
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known as either Tait’s computability method [45], or Girard’s reducibility candidates [27], or
as logical relations [38] [39]. I will briefly summarize the general idea – for a full proof using
this strategy, see for example POPLMark Reloaded [9].

Suppose we try to prove termination via induction on typing derivations. Writing the goal as
“for all Γ, 𝑡, 𝐴, if Γ ⊢ 𝑡 ∶ 𝐴 then 𝑡 terminates”, consider the application case:

Γ ⊢ 𝑓 ∶ 𝐴 → 𝐵 Γ ⊢ 𝑒 ∶ 𝐴
Γ ⊢ 𝑓 𝑒 ∶ 𝐵

By the induction hypothesis, we have that 𝑓 terminates and 𝑒 terminates, but how are we
to obtain 𝑓 𝑒 terminates? The substitution of 𝑒 into the body of 𝑓 may well enable further
reduction, so the goal doesn’t follow. Other attempts at simple structural induction are going
to run into roughly the same problem. Fundamentally, this is because function application
can make terms arbitrarily larger syntactically. For example, (𝜆𝑓 ∶ 𝟙 → 𝟙. 𝑓 (𝑓 ∗)) hugeTerm
reduces to hugeTerm (hugeTerm ∗), growing the overall expression in size.

To carry out the proof, we need a stronger induction hypothesis. We do this by constructing,
for each type𝐴, the set ⟦𝐴⟧ of terminating terms of that type. Crucially, this construction shall
be logical in the sense that elements of ⟦𝐴⟧ (which we call reducible) must respect elimination
forms for the type 𝐴. In the current variant of STLC, the only elimination form is function
application. Then, we show by induction on types or typing derivations that each well-typed
term 𝑡 ∶ 𝐴 is in ⟦𝐴⟧ and therefore terminating. For each type 𝐴, ⟦𝐴⟧ is a logical predicate (a
unary logical relation):

⟦𝐴⟧

⟦𝟙⟧ = { 𝑠 ∈ 𝑇𝑒𝑟𝑚 | ⋄ ⊢ 𝑠 ∶ 𝟙 ∧ 𝑠 terminates }
⟦𝐴 → 𝐵⟧ = { 𝑓 ∈ 𝑇𝑒𝑟𝑚 | ⋄ ⊢ 𝑓 ∶ 𝐴 → 𝐵 ∧ 𝑓 terminates ∧

∀𝑒 ∈ ⟦𝐴⟧. 𝑓 𝑒 ∈ ⟦𝐵⟧ }

The above isn’t quite enough because it only handles closed terms (⋄ is the empty context), but
it already illustrates a couple of important points. As promised, the relation is logical in that
reducible functions take reducible arguments to reducible values, so the elimination form for
functions – function application – is respected. In fact, if we fix type theory as the metatheory,
the relation ⟦𝐴 → 𝐵⟧ corresponding to a function type is itself a type of functions under the
Brouwer-Heyting-Kolmogorov interpretation of universal quantification. We have thus built
a kind of denotational semantics. This is an important observation which carries over all the
way up the lambda cube to dependent types. It also justifies referring to ⟦𝐴⟧ as the meaning
or semantics of 𝐴. In the present work (ch. 3.2), a reducible dependent pair is going to be
exactly a dependent pair of reducible terms together with a whole bunch of extra predicates.

Moreover, observe that the relation is defined by structural recursion on STLC types since
⟦𝐴 → 𝐵⟧ refers only to ⟦𝐴⟧, ⟦𝐵⟧. We therefore don’t need to justify its well-foundedness
beyond the validity of large elimination in the metatheory. This is notably not going to be the
case in the dependent setting.

To complete the definition, we should handle variable contexts and make weakening of the
relation admissible. The canonical solution is to make it Kripke, i.e. monotonic in the context
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extension relation (counterintuitively s.t. Γ,𝐴 ≤ Γ). We only need to enforce monotonicity
at function types – the rules for 𝟙 don’t bind variables, so ⟦𝟙⟧ can already be weakened. We
define a logical predicate for each context and type:

Γ ⊩ 𝑡 ∈ ⟦𝐴⟧

Γ ⊩ 𝑠 ∈ ⟦𝟙⟧ ⇔ Γ ⊢𝑠 ∶ 𝟙 ∧ 𝑠 terminates
Γ ⊩ 𝑓 ∈ ⟦𝐴 → 𝐵⟧ ⇔ Γ ⊢𝑓 ∶ 𝐴 → 𝐵 ∧ 𝑓 terminates ∧

∀𝑒 ∈ 𝑇𝑒𝑟𝑚. ∀Γ ′ ≤ Γ. Γ ′ ⊩ 𝑒 ∈ ⟦𝐴⟧ ⇒ Γ ′ ⊩ 𝑓 𝑒 ∈ ⟦𝐵⟧

Figure 2.1: Logical predicate for normalization of STLC

Now, since terms in the relation are terminating by definition, to show termination of well-
typed terms it suffices to show completeness of the relation w.r.t. our typing rules, i.e. that Γ ⊢
𝑡 ∶ 𝐴 implies Γ ⊩ 𝑡 ∈ ⟦𝐴⟧. This statement often bears the name of Fundamental Theorem (of
logical relations). Proving the FundamentalTheorem for dependent typing judgments entailed
the vast majority of work in the present project.

2.1 Equational theory
With strong normalization in hand, we can develop the theory further. While comparing
programs in a Turing-complete language for equivalence is undecidable, in STLC we can do it
by simply evaluating the programs and comparing the results. Indeed, driving terms down to
well-behaved normal forms and then comparing those is the key idea behind many decision
procedures for equational theories. For example, the ring tactic [29] in Coq handles the theory
of commutative semirings.

We could thus design an algorithm to decide a simple 𝛽-equivalencewhich equates STLC terms
that evaluate to the same value. However this notion of equivalence is not very useful. What
we really want is something to group terms into observationally equivalent classes, that is into
classes whose members exhibit the same computational behaviour. For example, (𝜆𝑥. 𝑓 𝑥) ∶
𝐴 → 𝐵 and 𝑓 ∶ 𝐴 → 𝐵 are extensionally the same function, but are not 𝛽-equivalent. A better
notion is then one of 𝛽𝜂-equivalence, given by the reflexive-symmetric-transitive closure of:

fun-𝛽

Γ,𝐴 ⊢ 𝑡 ∶ 𝐵 Γ ⊢ 𝑒 ∶ 𝐴
Γ ⊢ (𝜆𝑥. 𝑡) 𝑒 ≡ 𝑡[𝑒/𝑥] ∶ 𝐵

fun-𝜂

Γ ⊢ 𝑓 ∶ 𝐴 → 𝐵
Γ ⊢ (𝜆𝑥. 𝑓 𝑥) ≡ 𝑓 ∶ 𝐴 → 𝐵

unit-𝜂

Γ ⊢ 𝑠 ∶ 𝟙
Γ ⊢ 𝑠 ≡ ∗ ∶ 𝟙

abs-cong
Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ≡ 𝑢 ∶ 𝐵

Γ ⊢ (𝜆𝑥. 𝑡) ≡ (𝜆𝑥. 𝑢) ∶ 𝐴 → 𝐵

app-cong
Γ ⊢ 𝑓 ≡ 𝑔 ∶ 𝐴 → 𝐵 Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴

Γ ⊢ 𝑓 𝑡 ≡ 𝑔 𝑢 ∶ 𝐵

Since 𝛽-reduction is not a normalization procedure w.r.t. this equivalence, other strategies
have been developed. Prominent in the literature is Normalization by Evaluation (NbE) [15].
Roughly speaking, NbE works by repeatedly reflecting terms into their semantic correspon-
dents and then reifying them back into the object language. Its operation is described well in
Abel’s habilitation thesis [1]. Unfortunately as an algorithm for deciding 𝛽𝜂-equivalence, as
well as type conversion in the dependent setting, NbE is wasteful. To see why, it suffices to

4



know that NbE normalizes all subterms of a term in order to bring it to an 𝜂-long normal form.
Consider STLC with an inductive type of natural numbers:

zeRo

Γ ⊢ 0 ∶ ℕ

suc
Γ ⊢ 𝑛 ∶ ℕ

Γ ⊢ suc 𝑛 ∶ ℕ

Rec
Γ ⊢ 𝑧 ∶ 𝐴 Γ ⊢ 𝑠 ∶ ℕ → 𝐴 → 𝐴 Γ ⊢ 𝑛 ∶ ℕ

Γ ⊢ rec 𝑧 𝑠 𝑛 ∶ 𝐴

And a sufficiently expanded notion of equivalence:
Rec-zeRo
Γ ⊢ 𝑧 ∶ 𝐴 Γ ⊢ 𝑠 ∶ ℕ → 𝐴 → 𝐴

Γ ⊢ rec 𝑧 𝑠 0 ≡ 𝑧 ∶ 𝐴

Rec-suc
Γ ⊢ 𝑧 ∶ 𝐴 Γ ⊢ 𝑠 ∶ ℕ → 𝐴 → 𝐴 Γ ⊢ 𝑛 ∶ ℕ

Γ ⊢ rec 𝑧 𝑠 (suc 𝑛) ≡ 𝑠 𝑛 (rec 𝑧 𝑠 𝑛) ∶ 𝐴

suc-cong
Γ ⊢ 𝑛 ≡ 𝑚 ∶ ℕ

Γ ⊢ suc 𝑛 ≡ suc 𝑚 ∶ ℕ

Rec-cong
Γ ⊢ 𝑧1 ≡ 𝑧2 ∶ 𝐴 Γ ⊢ 𝑠1 ≡ 𝑠2 ∶ ℕ → 𝐴 → 𝐴 Γ ⊢ 𝑛1 ≡ 𝑛2 ∶ ℕ

Γ ⊢ rec 𝑧1 𝑠1 𝑛1 ≡ rec 𝑧2 𝑠2 𝑛2 ∶ 𝐴

In this language, it is quite clear that suc 𝑡 ≢ 0 ∶ ℕ for all 𝑡. In type theory this is sometimes
referred to as the no-confusion principle – distinct constructors cannot produce equivalent
terms. An NbE-based decision procedure, however, will not exploit this observation when
faced with the task of comparing suc hugeTerm and 0. It will instead go on to normalize hugeTerm
leading to major inefficiency. An alternative, useful especially for conversion in dependent
type theory [18], is to use a lazier, weak-head form of reduction and compare terms in weak-
head normal form (WHNF ).

A term in WHNF (Whnf) is either neutral (Ne) – inert because a redex subterm is blocked by a
variable – or an introduction form – such as an inductive type constructor – in head position
with arbitrary terms which needn’t be in WHNF as arguments. While the WHNFs of 𝜆Σ

are characterized in the appendix, fig. 5.1, the following grammar characterizes WHNFs and
neutral terms for STLC with natural numbers:

Term ∋ 𝑡, 𝑢, 𝑣 ∶∶= ̄𝑡 | 𝑡 𝑢 | rec 𝑡 𝑢 𝑣
Whnf ∋ ̄𝑡 ∶∶= 𝑛 | 𝜆𝑥. 𝑡 | ∗ | zero | suc 𝑡
Ne ∋ 𝑛 ∶∶= 𝑥 | 𝑛 𝑡 | rec 𝑡 𝑢 𝑛

Since both suc hugeTerm and 0 are WHNFs, the algorithm can immediately compare their head
constructors (suc and 0) and quickly decide the inequality.

One important consideration remains. Unlike NbE, weak-head reduction will not expand
terms into 𝜂-long form, so the equal pair (𝜆𝑥. 𝑓 𝑥) and 𝑓 looks different to any algorithm
which only compares terms in WHNF syntactically (up to 𝛼-equivalence). To regain exten-
sionality, we could extend weak-head reduction with an 𝜂-reduction rule: “(𝜆𝑥. 𝑓 𝑥) ⇝ 𝑓
if 𝑥 is not free in 𝑓”. But then properties like “a term in WHNF does not reduce” would not
hold since an abstraction is weak-head normal already, so we would need a more complicated
notion of weak-head normality. A better alternative which simplifies the presentation is to
modify the equivalence rules to be more algorithm-friendly. To do so, replace both fun-𝜂 and
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abs-cong with a single rule:
fun-ext
Γ, 𝑥 ∶ 𝐴 ⊢ 𝑓 𝑥 ≡ 𝑔 𝑥 ∶ 𝐵
Γ ⊢ 𝑓 ≡ 𝑔 ∶ 𝐴 → 𝐵

The reader can verify that, assuming inversion (Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 implies Γ ⊢ 𝑡 ∶ 𝐴 and Γ ⊢ 𝑢 ∶ 𝐴),
this rule implies and is implied by (fun-𝜂 ∧ abs-cong). It also directly tells us what to do, in
a type-directed manner. When two terms of function type are to be compared for equivalence,
simply apply both to a fresh variable and compare the outputs. The extensionality principle is
made clear – two functions are equal if they behave the same on all inputs. More generally, two
terms are equal if they look the same from all external perspectives, that is if any observations
we can make about them are equal. Following this philosophy, in ch. 3.2 the equivalence rule
for dependent sums is going to compare their behaviour at first and second projections.1. A
similar modification can be made for the unit type:

unit-ext
Γ ⊢ 𝑡 ∶ 𝟙 Γ ⊢ 𝑢 ∶ 𝟙

Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝟙

2.2 Decidability of 𝛽𝜂-equivalence
With the right design principles in place, we can go on to write down a term conversion
algorithm for STLC and outline a proof of its correctness. Here, I follow Crary’s exposition
[37, ch. 6], adapting it to be more in line with the target algorithm for 𝜆Σ. Any mistakes are
mine. In order to set the scene for dependent sum types, we shall consider 𝜆× – an STLC with
binary products2 (and without natural numbers, as they introduce no novelty here).

The grammar of 𝜆×:
Term ∋ 𝑡, 𝑢 ∶∶= ̄𝑡 | 𝑡 𝑢 | fst 𝑡 | snd 𝑡
Whnf ∋ ̄𝑡, 𝑢̄ ∶∶= 𝑛 | 𝜆𝑥. 𝑡 | ∗ | ⟨𝑡, 𝑢⟩
Ne ∋ 𝑛,𝑚 ∶∶= 𝑥 | 𝑛 𝑡 | fst 𝑛 | snd 𝑛

New typing and equivalence rules:
1This is something I got stuck on in the formal development, since I originally postulated the algorithm-

unfriendly 𝑝 ≡ ⟨fst 𝑝, snd 𝑝⟩.
2Which happens to complete the cartesian-closed structure, but this fact will not be used.
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Γ ⊢ 𝑡 ∶ 𝐴
pRod
Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝑢 ∶ 𝐵

Γ ⊢ ⟨𝑡, 𝑢⟩ ∶ 𝐴 × 𝐵

fst
Γ ⊢ 𝑡 ∶ 𝐴 × 𝐵
Γ ⊢ fst 𝑡 ∶ 𝐴

snd
Γ ⊢ 𝑡 ∶ 𝐴 × 𝐵
Γ ⊢ snd 𝑡 ∶ 𝐵

Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴

fst-𝛽

Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝑢 ∶ 𝐵
Γ ⊢ fst ⟨𝑡, 𝑢⟩ ≡ 𝑡 ∶ 𝐴

snd-𝛽

Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝑢 ∶ 𝐵
Γ ⊢ snd ⟨𝑡, 𝑢⟩ ≡ 𝑢 ∶ 𝐵

pRod-ext
Γ ⊢ fst 𝑡 ≡ fst 𝑡 ∶ 𝐴 Γ ⊢ snd 𝑡 ≡ snd 𝑡 ∶ 𝐵

Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 × 𝐵

fst-cong
Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 × 𝐵

Γ ⊢ fst 𝑡 ≡ fst 𝑢 ∶ 𝐴

snd-cong
Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 × 𝐵

Γ ⊢ snd 𝑡 ≡ snd 𝑢 ∶ 𝐵

As preordained, the extensionality principle pRod-ext for products considers their observable
behaviour by comparing the sides at both projections.

Then, the algorithm, given by the following rules and not more – we do not take any closures,
transitive or otherwise. Its rules should be read bottom-to-top:

Γ ⊢ 𝑡 ⟺̂ 𝑢 ∶ 𝐴

𝑡 ⟶∗ ̄𝑡 𝑢 ⟶∗ 𝑢̄ Γ ⊢ ̄𝑡 ⟺ 𝑢̄ ∶ 𝐴
Γ ⊢ 𝑡 ⟺̂ 𝑢 ∶ 𝐴

Γ ⊢ ̄𝑡 ⟺ 𝑢̄ ∶ 𝐴

Γ ⊢ 𝑛 ⟷ 𝑚 ∶ 𝐴
Γ ⊢ 𝑛 ⟺ 𝑚 ∶ 𝐴

Γ, 𝑥 ∶ 𝐴 ⊢ ̄𝑡 𝑥 ⟺̂ 𝑢̄ 𝑥 ∶ 𝐵
Γ ⊢ ̄𝑡 ⟺ 𝑢̄ ∶ 𝐴 → 𝐵

Γ ⊢ ̄𝑡 ∶ 𝟙 Γ ⊢ 𝑢̄ ∶ 𝟙
Γ ⊢ ̄𝑡 ⟺ 𝑢̄ ∶ 𝟙

Γ ⊢ fst ̄𝑡 ⟺̂ fst 𝑢̄ ∶ 𝐴
Γ ⊢ snd ̄𝑡 ⟺̂ snd 𝑢̄ ∶ 𝐵
Γ ⊢ ̄𝑡 ⟺ 𝑢̄ ∶ 𝐴 × 𝐵

Γ ⊢ 𝑛 ⟷ 𝑚 ∶ 𝐴

𝑥 ∶ 𝐴 ∈ Γ
Γ ⊢ 𝑥 ⟷ 𝑥 ∶ 𝐴

Γ ⊢ 𝑛 ⟷ 𝑚 ∶ 𝐴 → 𝐵 Γ ⊢ 𝑡 ⟺̂ 𝑢 ∶ 𝐴
Γ ⊢ 𝑛 𝑡 ⟷ 𝑚 𝑢 ∶ 𝐵

Γ ⊢ 𝑛 ⟷ 𝑚 ∶ 𝐴 × 𝐵
Γ ⊢ fst 𝑛 ⟷ fst 𝑚 ∶ 𝐴

Γ ⊢ 𝑛 ⟷ 𝑚 ∶ 𝐴 × 𝐵
Γ ⊢ snd 𝑛 ⟷ snd 𝑚 ∶ 𝐵

The algorithm’s entrypoint is the algorithmic conversion judgment Γ ⊢ 𝑡 ⟺̂ 𝑢 ∶ 𝐴. Its only
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job is to weak-head reduce both terms and then invoke weak-head algorithmic conversion Γ ⊢
̄𝑡 ⟺ 𝑢̄ ∶ 𝐴.

Weak-head conversion is type-directed – application of fresh variable for functions, immediate
equality for unit and comparison at projections for products. Observe that while introduction
forms – 𝜆𝑥. 𝑡, ∗, ⟨𝑡, 𝑢⟩ – are all WHNFs, there are no congruence or reflexivity rules for them
in ⟺ . This is because they are admissible as a consequence of the extensionality principles
for their respective types! As seen before, at function types fun-ext implies both abs-cong
and fun-𝜂 and similar results hold for the other types. Thanks to this we keep the algorithm
minimal.

If the terms to compare are neutral, weak-head conversion invokes conversion of neutral terms
Γ ⊢ 𝑛 ⟷ 𝑚 ∶ 𝐴 which handles variables and congruence of elimination forms – function
application and product projections. If neutral conversion has to compare function arguments,
it invokes the top-level judgment again and only then are the arguments reduced. Note that
since neutral terms are weak-head normal already, there is no distinct judgment like ⟺̂ to
reduce them.

AÖV’s algorithm (extended to 𝜆Σ in 5.4) follows these principles into the dependent setting.
Another pair of judgments – conversion of types Γ ⊢ 𝐴 ⟺̂ 𝐵 and weak-head normal types
Γ ⊢ 𝐴̄ ⟺ 𝐵̄ – is introduced which term-level rules have to be compatible with in the sense
that if Γ ⊢ 𝑡 ⟺̂ 𝑢 ∶ 𝐴 and Γ ⊢ 𝐴 ⟺̂ 𝐵 then Γ ⊢ 𝑡 ⟺̂ 𝑢 ∶ 𝐵. Moreover, to deal with
type-level operational semantics, the invocation of Γ ⊢ ̄𝑡 ⟺ 𝑢̄ ∶ 𝐴̄ by Γ ⊢ 𝑡 ⟺̂ 𝑢 ∶ 𝐴
also normalizes the type 𝐴. Analogous weak-head reduction has to be performed during type
conversion as well as conversion of neutral terms since, while neutrals are in WHNF, their
types may not be. A new ⟷̂ judgment is added to reduce the type of neutral terms.

Back to simple types. Correctness of the conversion algorithm is entailed by two properties:

• soundness – “Γ ⊢ 𝑡 ⟺̂ 𝑢 ∶ 𝐴 implies Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴”;

• and completeness – “Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 implies Γ ⊢ 𝑡 ⟺̂ 𝑢 ∶ 𝐴”.

Unlike in the dependent case which requires a semantic argument at this point already, sound-
ness for simple types is provable via straightforward inductive reasoning since most algorith-
mic rules look like their declarative counterparts.

Proving completeness is much harder. The trouble is essentially the same as in strong normal-
ization proofs, and so it can be solved in the same way. As could be expected of something that
makes a binary relation logical, the Kripke logical relation we construct is binary. It entails
algorithmic conversion while respecting elimination forms:
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Γ ⊩ 𝑡 ⟺̂ 𝑢 ∈ ⟦𝐴⟧

Γ ⊩ 𝑡 ⟺̂ 𝑢 ∈ ⟦𝟙⟧ iff ∃ ̄𝑡, 𝑢̄ s.t. 𝑡 ⟶∗ ̄𝑡 ∧ 𝑢 ⟶∗ 𝑢̄ ∧
Γ ⊢ ̄𝑡 ∶ 𝟙 ∧ Γ ⊢ 𝑢̄ ∶ 𝟙

Γ ⊩ 𝑓 ⟺̂ 𝑔 ∈ ⟦𝐴 → 𝐵⟧ iff ∃ ̄𝑓, 𝑔̄ s.t. 𝑓 ⟶∗ ̄𝑓 ∧ 𝑔 ⟶∗ 𝑔̄ ∧
Γ ⊢ ̄𝑓 ∶ 𝐴 → 𝐵 ∧ Γ ⊢ 𝑔̄ ∶ 𝐴 → 𝐵 ∧

∀𝑡, 𝑢 ∈ 𝑇𝑒𝑟𝑚. ∀Γ ′ ≤ Γ. if Γ ′ ⊩ 𝑡 ⟺̂ 𝑢 ∈ ⟦𝐴⟧
then Γ ′ ⊩ ̄𝑓 𝑡 ⟺̂ 𝑔̄ 𝑢 ∈ ⟦𝐵⟧

Γ ⊩ 𝑝 ⟺̂ 𝑟 ∈ ⟦𝐴 × 𝐵⟧ iff ∃𝑝̄, 𝑟̄ s.t. 𝑝 ⟶∗ 𝑝̄ ∧ 𝑟 ⟶∗ 𝑟̄ ∧
Γ ⊢ 𝑝̄ ∶ 𝐴 × 𝐵 ∧ Γ ⊢ 𝑟̄ ∶ 𝐴 × 𝐵 ∧

Γ ⊩ fst 𝑝̄ ⟺̂ fst 𝑟̄ ∈ ⟦𝐴⟧ ∧
Γ ⊩ snd 𝑝̄ ⟺̂ snd 𝑟̄ ∈ ⟦𝐵⟧

The statement is a little complicated, so let’s explore its main features. The somewhat vague
terminates predicate from earlier is still present at every type, but now in an exact form which
prescribes the existence of well-typed WHNFs to which both sides reduce. This formulation
builds in weak-head normalisation and enforces weak-head expansion – “if Γ ⊩ 𝑡′ ⟺̂ 𝑢′ ∈
⟦𝐴⟧ and 𝑡 ⟶∗ 𝑡′ and 𝑢 ⟶∗ 𝑢′ then Γ ⊩ 𝑡 ⟺̂ 𝑢 ∈ ⟦𝐴⟧” – by definition. As such, it is
somewhat overkill compared to alternative presentations – using a slightly different algo-
rithm, Crary [37, ch. 6] manages to avoid talking about reduction at all. However thanks to
looking like it does, the above definition generalizes more or less directly to what the model
of dependently-typed conversion is going to look like.

Like the predicate from fig. 2.1, our semantics models functions as functions. Moreover, since
𝜆× also includes products, the relation carries itself through their elimination forms. Under the
Brouwer-Heyting-Kolmogorov interpretation of logic, the conjunction of “fst projections are
reducibly equal” with “snd projections are reducibly equal” is indeed a pair, so the semantics
of a pair is also a pair in the metathory.

Note also that we only require reducibility of product projections to hold under the same
context rather than being necessarilymonotonic like reducibility of function applications. This
is sufficient since, similarly to 𝟙, none of the rules for products bind variables, so we can prove
monotonicity for them and hence for the entire relation without postulating it definitionally.

Using this definition we can prove completeness, in two parts:

1. If Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 then Γ ⊩ 𝑡 ⟺̂ 𝑢 ∈ ⟦𝐴⟧ (fundamental theorem)

2. If Γ ⊩ 𝑡 ⟺̂ 𝑢 ∈ ⟦𝐴⟧ then Γ ⊢ 𝑡 ⟺̂ 𝑢 ∶ 𝐴 (escape lemma)

Take note that reducible equality is implied by ordinary equivalence 𝑡 ≡ 𝑢 but implies algo-
rithmic conversion 𝑡 ⟺̂ 𝑢. There’s a degree of asymmetry – the logical relation Γ ⊩ 𝑡 ⟺̂ 𝑢 ∈
⟦𝐴⟧ is denoted by the relation which it implies rather than that which it is implied by. This
will be important later.

9



Let us first consider escape. This is provable via structural induction on types with the double
hypothesis:

• if Γ ⊩ 𝑡 ⟺̂ 𝑢 ∈ ⟦𝐴⟧ then Γ ⊢ 𝑡 ⟺̂ 𝑢 ∶ 𝐴
• if Γ ⊢ 𝑛 ⟷ 𝑚 ∶ 𝐴 then Γ ⊩ 𝑛 ⟺̂ 𝑚 ∈ ⟦𝐴⟧

Where the second part is needed to generate Γ, 𝑥 ∶ 𝐴 ⊩ 𝑥 ⟺̂ 𝑥 ∈ ⟦𝐴⟧ which we can then
pass to the function semantics in order to get Γ, 𝑥 ∶ 𝐴 ⊩ 𝑓 𝑥 ⟺̂ 𝑔 𝑥 ∈ ⟦𝐵⟧ and subsequently
retrieve Γ ⊢ 𝑓 ⟺ 𝑔 ∶ 𝐴 → 𝐵 via extensionality. Setting things up for this to work requires
careful consideration of the relation’s shape. AÖV take a different approach – simply add
Γ ⊢ 𝑡 ⟺̂ 𝑢 ∶ 𝐴 to every case of Γ ⊩ 𝑡 ⟺̂ 𝑢 ∈ ⟦𝐴⟧, making escape another property which
follows by-definition.

As for the fundamental theorem, it is almost provable by induction on equivalence derivations
thanks to the generality provided by our logical relation. Alas, a number of technicalities
remain.

First, since the conversion algorithm avoids non-deterministic rules such as transitivity (oth-
erwise, how would it come up with 𝑢 in 𝑡 ≡ 𝑢 ∧ 𝑢 ≡ 𝑣 when checking 𝑡 ≡ 𝑣?) and symmetry,
we must verify that conversion is a valid equivalence relation a posteriori. This is not too
hard, but it forces the design of the algorithm to be obviously transitive and symmetric. That
is, these properties must follow by syntactic rather than semantic arguments since we need
them to build semantics in the first place. This isn’t easily doable in the dependent case, so
something different is going to happen.

Second, besides closure under elimination forms, our relation must also be closed under sub-
stitution. Otherwise, there is no way to validate equalities that use substitution – in 𝜆×, that’s
reduction of abstractions (fun-𝛽) given by (𝜆𝑥. 𝑡) 𝑒 ≡ 𝑡[𝑒/𝑥]. The canonical solution is to
introduce a notion of reducibly equal substitutions and close reducible equality under those.

Two simultaneous substitutions 𝜎, 𝜎′ ∶ Δ → Γ are reducibly equal, denoted by Δ ⊩𝑠 𝜎 ⟺̂ 𝜎′ ∶
Γ, iff for all 𝑥 ∶ 𝐴 ∈ Γ we have that Δ ⊩ 𝜎(𝑥) ⟺̂ 𝜎′(𝑥) ∈ ⟦𝐴⟧.
Reducible equality that’s also closed under reducibly equal substitutions is then packaged by
AÖV into a single validity judgment.

Two terms 𝑡, 𝑢 of type 𝐴 are in the validity relation, denoted by Γ ⊩𝑣 𝑡 ⟺̂ 𝑢 ∈ ⟦𝐴⟧, iff for all
simultaneous substitutions 𝜎, 𝜎′ ∶ Δ → Γ, if Δ ⊩𝑠 𝜎 ⟺̂ 𝜎′ ∶ Γ then Δ ⊩ 𝑡[𝜎] ⟺̂ 𝑢[𝜎′] ∈ ⟦𝐴⟧.
With these tools, we can prove an adjusted fundamental theorem:

• If Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 then Γ ⊩𝑣 𝑡 ⟺̂ 𝑢 ∈ ⟦𝐴⟧
and correctness follows.

Finally, to show decidability of equivalence we exhibit a concrete decision procedure in a
constructive metatheory, for example by writing a function of type Γ ⊢ t <=̂> t ∷ A → Γ ⊢ u
<=̂> u ∷ A → Dec (Γ ⊢ t <=̂> u ∷ A) in Agda and transporting the result to Γ ⊢ t ∷ A → Γ ⊢ u ∷
A → Dec (Γ ⊢ t ≡ u ∷ A) using correctness.

2.3 Adding dependency
So far we have seen that 𝛽𝜂-equivalence of STLC terms can be efficiently decided with a
type-directed algorithm using weak-head reduction. The correctness of this algorithm can
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be proven using logical relation semantics.

The situation with dependent type theory is analogous in a sense, yet tremendously more com-
plicated in practice. To recap, a Martin-Löf style type theory can be given by four judgments:

• Γ ⊢ 𝐴 “𝐴 is a type in context Γ”
• Γ ⊢ 𝐴 = 𝐵 “𝐴 and 𝐵 are equal types in context Γ”
• Γ ⊢ 𝑡 ∶ 𝐴 “𝑡 is a term of type 𝐴 in context Γ”
• Γ ⊢ 𝑡 = 𝑢 ∶ 𝐴 “𝑡 and 𝑢 are equal terms of type 𝐴 in context Γ”

These judgments refer to each other arbitrarily via rules such as conversion (“if Γ ⊢ 𝐴 ≡ 𝐵 and
Γ ⊢ 𝑡 ∶ 𝐴 then Γ ⊢ 𝑡 ∶ 𝐵”), so their statements are mutually recursive. This stands in contrast
to the STLC in which equivalence rules depend on typing but not vice-versa. We were able to
exploit this fact and model algorithmic conversion with a single relation, Γ ⊩ 𝑡 ⟺̂ 𝑢 ∈ ⟦𝐴⟧.
Unfortunately we cannot do that here – what’s necessary instead is to construct a logical
relation for each of the type-theoretic judgments Γ ⊢ 𝔍. The relations will be denoted by
Γ ⊩ 𝔍 and the substitution validity wrappers by Γ ⊩𝑣 𝔍.
Just stating this construction can be difficult. Crary and Harper remark that in their work on
polymorphic and recursive types [20], establishing the relation’s existence was the most diffi-
cult step, making all other proofs comparatively easy. Consider what (non-Kripke) reducibility
might look like for dependent functions:

Γ ⊩ 𝑓 ∶ Π𝐴▹𝐵 iff Γ ⊢ 𝑓 ∶ Π𝐴▹𝐵 ∧ 𝑓 terminates ∧ ∀𝑡 ∈ 𝑇𝑒𝑟𝑚. if Γ ⊩ 𝑡 ∶ 𝐴 then Γ ⊩ 𝑓 𝑡 ∶ 𝐵[𝑡]

Well-foundedness of the above definition is in trouble because reducibility at Π𝐴▹𝐵 refers to
reducibility at 𝐵with 𝑡 substituted into it, which is a larger term! This is precisely the ghost of
function application from earlier coming back to haunt us at the type level. One way to resolve
the conflict is to justify the relation’s existence as the least fixpoint of a monotone operator
on a complete pointed partial order (a lattice, more or less) of semantic objects. Harper [30]
carries out this construction for a variant of Martin-Löf’s type theory [33] with Π/Σ/identity
types and a cumulative hierarchy of universes.

An alternative, arguably better approach taken by AÖV is to use a metatheory in which this
kind of construction is justified a priori. To achieve this, they employ Agda’s support for
induction-recursion [22] to define the logical relations by induction on types and recursion
on reducibility derivations. While alleviating the need for an elaborate fixpoint construction,
the scheme does not come without its own issues. For one, as AÖV observe, the gap in proof-
theoretic strength between the object theory and the inductive-recursive metatheory is per-
haps wider than one might like [23]. This isn’t so much a disadvantage over Harper’s work
since the metatheory there is also quite strong, but one might imagine that the semantics
required for decidability could be expressible in weaker systems, too. More immediately, in-
dexing by reducibility derivations makes for one of the worst pain points when working with
the formal codebase.

The Kripke relations split as follows (ignoring universes for now). For typehood, we still have
Γ ⊩ 𝐴, read as “𝐴 is a reducible type in context Γ”. For other judgments, let [𝐴] be a derivation
of Γ ⊩ 𝐴. We then have:

• Γ ⊩ 𝐴 = 𝐵 / [𝐴] “given [𝐴], 𝐴 and 𝐵 are reducibly equal types in context Γ”
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• Γ ⊩ 𝑡 ∶ 𝐴 / [𝐴] “given [𝐴], 𝑡 is a reducible term of type 𝐴 in context Γ”
• Γ ⊩ 𝑡 = 𝑢 ∶ 𝐴 / [𝐴] “given [𝐴], 𝑡 and 𝑢 are reducibly equal terms of type 𝐴 in context Γ”

AÖV immediately prove irrelevance lemmas which state that these relations are really the
same regardless of which derivation [𝐴] is. Still, in a theorem prover one finds a need to apply
irrelevance rather often. As such, the definition is one of many causes of the proofs’ verbosity.
Under the hood, this is yet another instance of the dependent indexing problem hinted at in
ch. 1.2. We hope that a solution to this particular case that doesn’t require radically redefining
the relation should be possible.

One idea would be to develop tactic-based tools which apply irrelevance automatically. Unfor-
tunately the rudimentary state of metaprogramming in Agda makes this somewhat difficult.
Another would be to work with existential types ∑[𝐴] . Γ ⊩ 𝔍 / [𝐴], however AÖV claim that
this also causes some issues. Finally, one could try to place Γ ⊩ 𝐴 in Prop, the proof-irrelevant
universe of strict propositions which has recently been added [25] to Agda. Consequently
being proofs of a strict proposition, all [𝐴]s would become definitionally equal. But there
are conceptual obstacles to how such a construction could work. Restrictions on dependent
elimination of Prop proofs would likely force all propositions in sight including completeness,
soundness and decidability to inhabit Prop as well. Moreover, if all proofs of [𝐴] are considered
the same then recursion on their derivations does not seem to make sense. Finally, is it even
possible to model a type theory describing data in a universe hierarchy of pure propositions?
With the preceding statements made, it has to be noted that they are only vague intuitions
which have not been investigated formally, so it may well be that something to the effect of
Prop-ifying the relation is possible.

Further difficulties occur due to the dynamic behaviour of types – in dependent type theory,
types have operational semantics similar to that of terms and can take arbitrary syntactic
forms. Even with induction-recursion, we need additional insight to tame this behaviour. The
canonical solution is to state the logical relations on types in WHNF only and then use weak-
head expansion properties (roughly that if Γ ⊩ 𝔍(𝑢) and 𝑡 ⟶∗ 𝑢, then Γ ⊩ 𝔍(𝑡)) to extend
this definition to all types.

Finally, the existence of two universes necessitates defining logical families under an induction
on the universe level such that the relation at𝑈, a large type, can refer to reducible small types
as its elements. The resulting semantics are then of the form Γ ⊩ℓ 𝔍 for ℓ = 0, 1.
The last step towards establishing the right form of reducibility is to update our understanding
of the various parts of the decidability proof. Term and type equality depend on each other, so
we show decidability of both together. The proof’s three components at term equality adapted
to dependent types could look like so:

1. soundness – “if Γ ⊢ 𝑡 ⟺̂ 𝑢 ∶ 𝐴 then Γ ⊢ 𝑡 = 𝑢 ∶ 𝐴”

2. completeness – “if Γ ⊢ 𝑡 = 𝑢 ∶ 𝐴 then Γ ⊢ 𝑡 ⟺̂ 𝑢 ∶ 𝐴”

3. decidability – “if Γ ⊢ 𝑡 ⟺̂ 𝑡 ∶ 𝐴 and Γ ⊢ 𝑢 ⟺̂ 𝑢 ∶ 𝐴 then we can decide whether
Γ ⊢ 𝑡 ⟺̂ 𝑢 ∶ 𝐴”

and analogously for equality of types.

Exhibiting a decision procedure is not very hard, so let us focus on 1 and 2. From the study
of 𝜆× we know that a fundamental theorem will be needed to prove completeness. Recall that

12



since reducible equality implies convertibility, we would expect to prove something like “if
Γ ⊢ 𝑡 = 𝑢 ∶ 𝐴 then exists [𝐴] s.t. Γ ⊩𝑣 𝑡 ⟺̂ 𝑢 ∶ 𝐴 / [𝐴]”.
But what about soundness? Unfortunately dependency presents another stumbling block here.
While soundness for STLC was easily provable, proving it for the formulation of 𝜆Σ in 5.2
requires a healthy amount of semantics. In fact, another fundamental theorem is needed: “if
Γ ⊢ 𝑡 = 𝑢 ∶ 𝐴 then exists [𝐴] s.t. Γ ⊩𝑣 𝑡 = 𝑢 ∶ 𝐴 / [𝐴]”. Here we are showing a slightly
different kind of reducible equality, one which models ordinary definitional equality rather
than algorithmic conversion. This of course requires defining another logical relation.

At this point it is worthwhile to consider whether this relation (called the first because it
comes before completeness) is really necessary. As a model, it provides rather strong results
– canonicity and logical consistency of the calculus. While important, they are completely
tangential to the goal of demonstrating decidable conversion and are not used in the proof.
This pecularity begs the question of whether there might be an easier path to the prerequisites
of soundness.

One prerequisite is syntactic validity – for type equality, “if Γ ⊢ 𝐴 = 𝐵 then Γ ⊢ 𝐴 and
Γ ⊢ 𝐵”; for term equality, “if Γ ⊢ 𝑡 = 𝑢 ∶ 𝐴 then Γ ⊢ 𝐴 and Γ ⊢ 𝑡 ∶ 𝐴 and Γ ⊢ 𝑢 ∶ 𝐴”; and
correspondingly for well-typedness judgments. As noted by Sterling [41], syntactic validity
can be made to be provable syntactically by building the required presuppositions into the
typing rules. For example, congruence of the second projection could be enriched as follows:

Γ ⊢ 𝐹 Γ, 𝐹 ⊢ 𝐺
Γ ⊢ 𝑡 = 𝑢 ∶ Σ𝐹▹𝐺 Γ ⊢ 𝐺[fst 𝑡] Γ ⊢ snd 𝑡 ∶ 𝐺[fst 𝑡] Γ ⊢ snd 𝑢 ∶ 𝐺[fst 𝑡]

Γ ⊢ snd 𝑡 = snd 𝑢 ∶ 𝐺[fst 𝑡]

While quite heavyweight syntactically, this process does eliminate the necessity of a semantic
argument. It is not inconceivable then that with similar tricks we might be able to prove
other prerequisites such as unique typing of neutral terms and get to soundness via syntactic
means. Does this mean that conversion-escaping semantics (the second logical relation) could
be sufficient on its own? Sadly not – we cannot immediately get rid of the first logical relation.
This is because its consequences are also necessary to prove the second fundamental theorem.

Recall that certain rules like symmetry and transitivity are omitted from algorithmic conver-
sion due to their non-deterministic nature and that we must show these properties a posteriori
to validate the corresponding definitional equalities. Consider algorithmic conversion of neu-
tral second projections:

Γ ⊢ 𝑛 ⟷ 𝑚 ∶ Σ𝐹▹𝐺
Γ ⊢ snd 𝑛 ⟷̂ snd 𝑚 ∶ 𝐺[fst 𝑛]

Flipping the conclusion into Γ ⊢ snd 𝑚 ⟷̂ snd 𝑛 ∶ 𝐺[fst 𝑛] to achieve symmetry requires
nontrivial theorems about the validity of substitution using the equality fst 𝑛 ≡ fst 𝑚, so it
isn’t something we can do without semantics. And injecting additional typing assumptions as
above to make symmetry hold by fiat seems like a strange thing to do for an algorithm that
should be kept minimal. Even worse, transitivity seems to require weak-head normalization.
Despite these observations, I believe golfing the proof could be an interesting avenue of future
exploration. For now, though, we stick with two fundamental theorems.
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As AÖV observe, and my own experience echoes this statement, proving even a single funda-
mental theorem is a significant undertaking:

Especially the proof of the fundamental theorem of logical relations is substan-
tial (5.000 lines). The congruence rule for the recursor for natural numbers alone
requires a lemma that stretches over more than 500 lines. It is not that the proof
is mathematically deep, once the right definition of the logical relation and the
right formulation of the fundamental theorem are in place–it is just that a for-
malization requires us to get all the technicalities right. In research articles with
pen and paper proofs only, the proof of the fundamental theorem is often skipped
or reduced to the single sentence “proof by induction on the typing and equality
derivations”. Yet checking that each case of the induction goes through would
require a reviewer many hours of disciplined technical reasoning. Written out,
the proof would stretch over many pages. [8]

To the existing 5,000 lines, in this project I added just short of another thousand. It would
be very painful to carry out the proof twice. To avoid doing this, AÖV make the relation
parametric over a generic equality.

3 Generic equality and typed reduction
Generic equality is one of two technical devices which AÖV introduce to simplify the formal
development. I will briefly recount them here and then summarize the structure of their proof.

1. A set of predicates on a family of binary relations is defined (in 5.5). Any family which
meets these predicates is called an instance of generic equality. Such an instance is de-
noted by Γ ⊢ 𝐴 ≅ 𝐵 (type equality), Γ ⊢ 𝑡 ≅ 𝑢 ∶ 𝐴 (term equality) and Γ ⊢ 𝑡 ∼ 𝑢 ∶ 𝐴
(neutral term equality). The definition is generic enough that both definitional equality
and algorithmic conversion are instances, but specific enough to be usable in a model
of the type theory. An instance is symmetric and transitive but irreflexive in general –
reflexivity is only required at introduction forms3. Besides respecting the typing rules of
𝜆Σ, it must admit type conversion, weakening, weak-head expansion and be compatible
with definitional equality.

On top of any such instance, a family Γ ⊩ 𝑡 ≅ 𝑢 ∶ 𝐴 / [𝐴], Γ ⊩ 𝐴 ≅ 𝐵 / [𝐴] of generic
logical relations is defined. We are then able to show:

• if Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 then exists [𝐴] s.t. Γ ⊩𝑣 𝑡 ≅ 𝑢 ∶ 𝐴 / [𝐴] (generic fundamental
theorem)

• if Γ ⊩ 𝑡 ≅ 𝑢 ∶ 𝐴 / [𝐴] then Γ ⊢ 𝑡 ≅ 𝑢 ∶ 𝐴 (generic escape)

• if Γ ⊩ 𝑡 ≅ 𝑢 ∶ 𝐴 / [𝐴] then Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 (compatibility with definitional equality)

and correspondingly for type equality.

As motivated earlier, the abstraction of models over definitional and algorithmic equal-
ity makes a massive difference in the formalisation effort. On the other hand, a disad-
vantage of this approach is that declarative equality rules and algorithmic conversion
rules must match very closely. Freedom of design is restricted by a necessity to specify

3Although in general the semantics isn’t quite Partial Equivalence Relation-based, we could refer to reflexive
terms as being in the PER.
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algorithmic conversion rules close in form to their corresponding definitional equali-
ties. This means that conversion can be lighter on typing premises, but it is difficult to
make more fundamental changes such as using algorithm-friendly (ch. 2.2) rules in the
algorithm and generating equations such as 𝑓 = (𝜆𝑥. 𝑓 𝑥) in the static type theory.

2. Following the work of Abel, Coquand and Mannaa [7], AÖV use a typed weak-head
reduction relation Γ ⊢ 𝑡 ⟶ 𝑢 ∶ 𝐴 as opposed to the usual untyped judgment 𝑡 ⟶ 𝑢.
The construction could be seen as moving from Curry-style towards a Church-style
presentation. It has the useful effect of making the inclusion of reduction in equivalence
– that Γ ⊢ 𝑡 ⟶ 𝑢 ∶ 𝐴 implies Γ ⊢ 𝑡 = 𝑢 ∶ 𝐴 – provable early-on via a purely syntactic
argument. I found this to be a good idea, although it does force certain non-obvious
design choices. For example, the second projection reduction for dependent sums must
read

Γ ⊢ 𝑡 ∶ 𝐹 Γ ⊢ 𝑢 ∶ 𝐺[𝑡]
Γ ⊢ snd ⟨𝑡, 𝑢⟩ ⟶ 𝑢 ∶ 𝐺[fst ⟨𝑡, 𝑢⟩] rather than

Γ ⊢ 𝑡 ∶ 𝐹 Γ ⊢ 𝑢 ∶ 𝐺[𝑡]
Γ ⊢ snd ⟨𝑡, 𝑢⟩ ⟶ 𝑢 ∶ 𝐺[𝑡]

in order for the syntactic proofs to go through. The latter version is admissible as a
consequence of the fundamental theorem.

This happens because well-typedness of the redex is eventually needed to show weak-
head expansion. To get at the correct form of typed reduction, we suggest constructing
a typing derivation for the left side, which in this case would be:

Γ ⊢ 𝑡 ∶ 𝐹 Γ ⊢ 𝑢 ∶ 𝐺[𝑡]
Γ ⊢ ⟨𝑡, 𝑢⟩ ∶ Σ𝐹▹𝐺

Γ ⊢ 𝑠𝑛𝑑 ⟨𝑡, 𝑢⟩ ∶ 𝐺[fst ⟨𝑡, 𝑢⟩]

To sum up, the high-level structure of proof is as follows:

1. Establish syntactic properties of typing, definitional equality and reduction rules. Ad-
missibility of weakening, inclusion of reduction in definitional equality, strong conflu-
ence, properties of WHNFs.

2. Establish a number of properties of the logical relation over a generic equality culmi-
nating in the generic fundamental theorem.

3. Show that definitional equality is an instance of generic equality. Apply the fundamental
theorem to derive properties such as injectivity of Π/Σ types, canonicity, consistency,
weak-head normalization and admissibility of substitution.

4. Use these properties to prove soundness of algorithmic conversion and show that it is
an instance of generic equality.

5. Derive completeness of the algorithm from the generic fundamental theorem.

6. Exhibit the decision procedure and conclude the proof.

3.1 Adding Unit
Having described the high-level proof structure, I will now explain at which points changes
had to be made to add the unit type. As a fairly straightforward addition, it clearly demon-
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strates parts of the codebase.

3.1.1 Type

As we’ve seen, reducible typehood Γ ⊩ 𝐴 is given by an inductive predicate with the other
three judgments defined by recursion on top of it. In code, extending the relational model with
a new type has the effect of a new constructor for the predicate and a new case to handle it in
each recursive definition:
data _⊩¹_ (Γ : Con Term) : Term → Set where

Unitᵣ : ∀ {A} → Γ ⊩Unit A → Γ ⊩¹ A
-- other constructors

_⊩¹_≡_/_ : (Γ : Con Term) (A B : Term) → Γ ⊩¹ A → Set
Γ ⊩¹ A ≡ B / Unitᵣ D = Γ ⊩Unit A ≡ B
-- other cases

_⊩¹_∷_/_ : (Γ : Con Term) (t A : Term) → Γ ⊩¹ A → Set
Γ ⊩¹ t ∷ A / Unitᵣ D = Γ ⊩Unit t ∷Unit
-- other cases

_⊩¹_≡_∷_/_ : (Γ : Con Term) (t u A : Term) → Γ ⊩¹ A → Set
Γ ⊩¹ t ≡ u ∷ A / Unitᵣ D = Γ ⊩Unit t ≡ u ∷Unit
-- other cases

As the symbol 𝟙 itself is just a single constant, its typehood and type equality are the closures
of this constant under weak-head expansion:
_⊩Unit_ : (Γ : Con Term) (A : Term) → Set
Γ ⊩Unit A = Γ ⊢ A :⇒*: Unit

_⊩Unit_≡_ : (Γ : Con Term) (A B : Term) → Set
Γ ⊩Unit A ≡ B = Γ ⊢ B ⇒* Unit

(The judgment Γ ⊢ A :⇒*: B packages together Γ ⊢ A, Γ ⊢ B and Γ ⊢ A ⇒* B. Similarly, Γ ⊢ t
:⇒*: u ∷ A entails Γ ⊢ t ∷ A, Γ ⊢ u ∷ A and Γ ⊢ t ⇒* u ∷ A.)

3.1.2 Terms

The unit type contains one canonical term – the star ∗. There is no computational behaviour
associated with terms. The present type theory isn’t linear, so no eliminators are needed either.
Beyond the design of extensionality principles discussed earlier, there isn’t anything surprising
about the typing rules (fully specified in the appendix):

⊢ Γ
Γ ⊢ ∗ ∶ 𝟙

Γ ⊢ 𝑡 ∶ 𝟙 Γ ⊢ 𝑢 ∶ 𝟙
Γ ⊢ 𝑡 = 𝑢 ∶ 𝟙

Generic equality is modified accordingly. Note that reflexivity of ∗ is derivable from exten-
sionality, so is not added:

Γ ⊢ 𝑡 ∶ 𝟙 Γ ⊢ 𝑢 ∶ 𝟙
Γ ⊢ 𝑡 ≅ 𝑢 ∶ 𝟙

As for term reducibility at 𝟙, after several iterations I was able to cut it down to a bare min-
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imum. In an earlier version, it was specified as for a general positive type [35] by describing
reducibleWHNFs – the star and reducible neutral terms (below) and taking their closure under
weak-head expansion.
-- The property of being a reducible unit term in WHNF.
data Unit-prop (Γ : Con Term) : (n : Term) → Set where

starᵣ : Unit-prop Γ star
ne : ∀ {n} → Γ ⊩neNf n ∷ Unit → Unit-prop Γ n

However this turned out to be unnecessary, more or less thanks to unit’s contractibility4. The
final definition of a reducible term at 𝟙 is then exactly the same as it would be for STLC, simply
postulating that the term reduce to any WHNF at all, as long as it has the right type:
record _⊩Unit_∷Unit (Γ : Con Term) (t : Term) : Set where

inductive
constructor Unitₜ
field

n : Term
d : Γ ⊢ t :⇒*: n ∷ Unit
prop : Whnf n

To finish the logical relation, we model reducible equality by any pair of terms whatsoever,
as long as they have the right type. This postulate is sufficient (again due to contractibility)
to prove all needed properties. In contrast with the relation for conversion of 𝜆×, not even
weak-head normalisation is required, morally because the termhood relation (which wasn’t
necessary and so wasn’t defined at all for 𝜆× conversion) already implies it. There are no
elimination forms to respect and hence no logicality conditions.
record _⊩Unit_≡_∷Unit (Γ : Con Term) (t u : Term) : Set where

constructor Unitₜ₌
field

⊢t : Γ ⊢ t ∷ Unit
⊢u : Γ ⊢ u ∷ Unit

3.1.3 Fundamental theorem

Cases of the fundamental theorem for 𝟙 are similarly straightforward. For example, η-unitᵛ
below validates extensionality by proving that any two reducible (and valid) terms of unit type
are reducibly equal (and stay equal under all substitutions). Some irrelevance has to be applied
to move between reducible typehood derivation indices:
η-unitᵛ : ∀ {Γ l e e'} ([Γ] : ⊩ᵛ Γ)

([Unit] : Γ ⊩ᵛ⟨ l ⟩ Unit / [Γ])
([e] : Γ ⊩ᵛ⟨ l ⟩ e ∷ Unit / [Γ] / [Unit])
([e'] : Γ ⊩ᵛ⟨ l ⟩ e' ∷ Unit / [Γ] / [Unit])
→ Γ ⊩ᵛ⟨ l ⟩ e ≡ e' ∷ Unit / [Γ] / [Unit]

η-unitᵛ {Γ} {l} {e} {e'} [Γ] [Unit] [e] [e'] {Δ} {σ} ⊢Δ [σ] =
let J = proj₁ ([Unit] ⊢Δ [σ])

[σe] = proj₁ ([e] ⊢Δ [σ])
[σe'] = proj₁ ([e'] ⊢Δ [σ])
UnitJ : Δ ⊩⟨ l ⟩ Unit
UnitJ = Unitᵣ (idRed:*: (Unitⱼ ⊢Δ))
[σe] = irrelevanceTerm J UnitJ [σe]
[σe'] = irrelevanceTerm J UnitJ [σe']
⊢σe = escapeTerm UnitJ [σe]
⊢σe' = escapeTerm UnitJ [σe']

in irrelevanceEqTerm UnitJ J (Unitₜ₌ ⊢σe ⊢σe')
4The property that there exists a term of this type s.t. all elements of the type are equal to it.
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(A detail of the above definition which I entirely glossed over is that besides being indexed
by derivations of typehood, validity judgments also have to be indexed by context validity
derivations ⊩𝑣 Γ. In fact, valid typehood itself is indexed by these. So given a derivation [Γ]
of ⊩𝑣 Γ, as well as a derivation [𝐴] of Γ ⊩𝑣 𝐴 / [Γ], we get term validity Γ ⊩𝑣 𝑡 ∶ 𝐴 / [Γ] / [𝐴]
and so forth. The reason for this extra index is essentially the same as for [𝐴] – it is there to
bootstrap the inductive-recursive definition of reducibly equal substitutions (ch. 2.2). While
being yet another detail to keep in mind, it is not conceptually very important.)

3.1.4 Conversion

For𝟙, we extend the algorithmwith a single extensionality principle shown below. A few cases
(in appendix) are also added to reflexivity and compatibility rules to ensure that 𝟙 ⟺ 𝟙, that
neutral conversion at 𝟙 implies algorithmic conversion at 𝟙 and so on.

Γ ⊢ ̄𝑡 ∶ 𝟙 Γ ⊢ 𝑢̄ ∶ 𝟙
Γ ⊢ ̄𝑡 ⟺ 𝑢̄ ∶ 𝟙

Note that the algorithm I procure is actually somewhat inefficient at comparing unitary terms.
Recall that the purpose of ⟺̂ is to reduce both sides before invoking ⟺ . When tasked
with checking Γ ⊢ 𝑡 ⟺̂ 𝑢 ∶ 𝐴 where Γ ⊢ 𝐴 ⟶∗ 𝟙, the procedure is going to unnecessarily
reduce all terms to WHNF even though it could just reduce the type, observe that it is 𝟙 and
then immediately appeal to contractibility. After reduction, this appeal is finally made by
⟺ .

I do not carry out this kind of microptimization because it would likely require nontrivial
changes to the structure of the formal codebase and conversion judgments. An interesting
idea would be to postulate that every term of type 𝟙 is in WHNF in order to completely ban-
ish reduction. But again, implementing the idea here would require a substantial amount of
effort either in making WHNFhood typed or in some other change which preserves necessary
provabilities. As such, it is left as future work. A similar idea (to my best knowledge not
discussed in literature, although the implementation of the Lean theorem prover [21], whose
conjectured undecidability [2] could also potentially be fixed by banishing proof reduction,
seems to do it) could work for converting proofs in a proof-irrelevant universe.

Going back to the present code, a bit of notation – algorithmic conversion judgments are
expressed in Agda as follows:

Judgment Agda representation
Γ ⊢ 𝐴 ⟺̂ 𝐵 Γ ⊢ A [conv↑] B
Γ ⊢ 𝐴 ⟺ 𝐵 Γ ⊢ A [conv↓] B
Γ ⊢ 𝑡 ⟺̂ 𝑢 ∶ 𝐴 Γ ⊢ t [conv↑] u ∷ A
Γ ⊢ 𝑡 ⟺ 𝑢 ∶ 𝐴 Γ ⊢ t [conv↓] u ∷ A
Γ ⊢ 𝑡 ⟷̂ 𝑢 ∶ 𝐴 Γ ⊢ t ~ u ↑ A
Γ ⊢ 𝑡 ⟷ 𝑢 ∶ 𝐴 Γ ⊢ t ~ u ↓ A

And in the decision procedure, thanks to unit’s contractibility and utilizing some consequences
of the first fundamental theorem (syntacticEqTerm is syntactic validity) we can just answer yes:
decConv↓Term-Unit : ∀ {t u Γ}

→ Γ ⊢ t [conv↓] t ∷ Unit
→ Γ ⊢ u [conv↓] u ∷ Unit
→ Dec (Γ ⊢ t [conv↓] u ∷ Unit)
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decConv↓Term-Unit tConv uConv =
let t≡t = soundnessConv↓Term tConv

u≡u = soundnessConv↓Term uConv
_ , [t] , _ = syntacticEqTerm t≡t
_ , [u] , _ = syntacticEqTerm u≡u
_ , tWhnf , _ = whnfConv↓Term tConv
_ , uWhnf , _ = whnfConv↓Term uConv

in yes (η-unit [t] [u] tWhnf uWhnf)

3.2 Adding Sigma
While 𝟙 was a walk in the park, dependent sums engage the entire machinery developed so
far.

3.2.1 Types

In an attempt to minimize duplication while defining the type family, I generalized the rules
for Π types to talk about 𝔅inding types – Π and Σ – instead.

Γ ⊢ 𝐹 Γ, 𝐹 ⊢ 𝐺
Γ ⊢ 𝔅𝐹▹𝐺 (for 𝔅 = Π,Σ)

Γ ⊢ 𝐹 Γ ⊢ 𝐹 = 𝐻 Γ, 𝐹 ⊢ 𝐺 = 𝐸
Γ ⊢ 𝔅𝐹▹𝐺 = 𝔅𝐻▹𝐸 (for 𝔅 = Π,Σ)

In code, the symbols are denoted by two constants BΠ, BΣ : BindingType and the types by a
generic type ⟦_⟧ F ▸ G:
⟦_⟧_▹_ : BindingType → Term → Term → Term
⟦ BΠ ⟧ F ▹ G = Π F ▹ G
⟦ BΣ ⟧ F ▹ G = Σ F ▹ G

Wherever possible, mechanised proofs are also generic over the two.

Primarily due to the presence of variable binding, reducibility of a 𝔅-type already has to pos-
tulate a number of requirements:
record _⊩¹B⟨_⟩_ (Γ : Con Term) (W : BindingType) (A : Term) : Set where

inductive
constructor Bᵣ
field

F : Term
G : Term
D : Γ ⊢ A :⇒*: ⟦ W ⟧ F ▹ G
⊢F : Γ ⊢ F
⊢G : Γ ∙ F ⊢ G
A≡A : Γ ⊢ ⟦ W ⟧ F ▹ G ≅ ⟦ W ⟧ F ▹ G
[F] : ∀ {ρ Δ} → ρ ∷ Δ ⊆ Γ → ⊢ Δ → Δ ⊩¹ U.wk ρ F
[G] : ∀ {ρ Δ a}

→ ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ Δ ⊩¹ a ∷ U.wk ρ F / [F] [ρ] ⊢Δ
→ Δ ⊩¹ U.wk (lift ρ) G [ a ]

G-ext : ∀ {ρ Δ a b}
→ ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([a] : Δ ⊩¹ a ∷ U.wk ρ F / [F] [ρ] ⊢Δ)
→ ([b] : Δ ⊩¹ b ∷ U.wk ρ F / [F] [ρ] ⊢Δ)
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→ Δ ⊩¹ a ≡ b ∷ U.wk ρ F / [F] [ρ] ⊢Δ
→ Δ ⊩¹ U.wk (lift ρ) G [ a ] ≡ U.wk (lift ρ) G [ b ] / [G] [ρ] ⊢Δ [a]

These are generalized from reducibility of Π types without modification, so I will only briefly
sum them up here. Kripke monotonicity generates a fair bit of syntactic noise and tedium –
let’s attempt to tease out underlying properties which entail 𝐴 being a reducible 𝔅-type:

• The existence of a WHNF of the right shape to which 𝐴 reduces (also achieving weak-
head expansion closure) is postulated in F, G and D. Well-typedness of the WHNF’s com-
ponents is enforced in ⊢F and ⊢G, which also force syntactic validity of Σ (if Γ ⊢ Σ𝐹▹𝐺
then Γ ⊢ 𝐹 and Γ, 𝐹 ⊢ 𝐺). The WHNFs must be reflexive w.r.t. generic equality, or in
the generic PER, says A≡A.

• [F] and [G] are componentwise reducibility postulates. The latter is a logicality condition
– G is effectively a type-level reducible function in that it takes reducible arguments to
reducible types.

• G-ext is logicality w.r.t. reducible term equality – reducibly equal reducible terms sub-
stitute into G to yield reducibly equal types.

Reducible equality of 𝔅-types is similar. Γ ⊩ 𝔅𝐹▹𝐺 ≅ 𝔅𝐹′▹𝐺′ / [𝐴] breaks down into com-
ponentwise reducible equalities. [F≡F′] is just Kripkefied Γ ⊩ 𝐹 ≅ 𝐹′ / [𝐹], while [G≡G′] could
be seen as Γ, 𝐹 ⊩ 𝐺 ≅ 𝐺′ / [𝐺] – a reducible equality of type families. As such, it generates an-
other logicality condition which ensures the types stay equal under substitutions of reducible
terms. The two equalities [F≡F′] and [G≡G′] also have the effect of enforcing injectivity of Π
and Σ types.
record _⊩¹B⟨_⟩_≡_/_ (Γ : Con Term) (W : BindingType) (A B : Term) ([A] : Γ ⊩¹B⟨ W ⟩ A) : Set

where↪

inductive
constructor B₌
-- Access implications of the reducibility derivation [A] we are indexed by.
open _⊩¹B⟨_⟩_ [A]
field

F′ : Term
G′ : Term
D′ : Γ ⊢ B ⇒* ⟦ W ⟧ F′ ▹ G′
A≡B : Γ ⊢ ⟦ W ⟧ F ▹ G ≅ ⟦ W ⟧ F′ ▹ G′
[F≡F′] : ∀ {ρ Δ}

→ ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ Δ ⊩¹ U.wk ρ F ≡ U.wk ρ F′ / [F] [ρ] ⊢Δ

[G≡G′] : ∀ {ρ Δ a}
→ ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([a] : Δ ⊩¹ a ∷ U.wk ρ F / [F] [ρ] ⊢Δ)
→ Δ ⊩¹ U.wk (lift ρ) G [ a ] ≡ U.wk (lift ρ) G′ [ a ] / [G] [ρ] ⊢Δ [a]

Like for 𝟙, reducible typing and reducible type equality are added to the general relations:
data _⊩¹_ (Γ : Con Term) : Term → Set where

Bᵣ : ∀ {A} W → Γ ⊩¹B⟨ W ⟩ A → Γ ⊩¹ A
-- other constructors

_⊩¹_≡_/_ : (Γ : Con Term) (A B : Term) → Γ ⊩¹ A → Set
Γ ⊩¹ A ≡ B / Bᵣ W [A] = Γ ⊩¹B⟨ W ⟩ A ≡ B / [A]
-- other cases
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3.2.2 Terms

The term-level rules for dependent pairs are below. Their operational semantics of typed re-
duction (in appendix 5.3) are exactly the equalities except extensionality, read left-to-right.

Γ ⊢ 𝐹 Γ, 𝐹 ⊢ 𝐺 Γ ⊢ 𝑡 ∶ 𝐹 Γ ⊢ 𝑢 ∶ 𝐺[𝑡]
Γ ⊢ ⟨𝑡, 𝑢⟩ ∶ Σ𝐹▹𝐺

Γ ⊢ 𝐹 Γ, 𝐹 ⊢ 𝐺 Γ ⊢ 𝑡 ∶ Σ𝐹▹𝐺
Γ ⊢ fst 𝑡 ∶ 𝐹

Γ ⊢ 𝐹 Γ, 𝐹 ⊢ 𝐺 Γ ⊢ 𝑡 ∶ Σ𝐹▹𝐺
Γ ⊢ snd 𝑡 ∶ 𝐺[fst 𝑡]

Γ ⊢ 𝐹 Γ, 𝐹 ⊢ 𝐺 Γ ⊢ 𝑡 = 𝑢 ∶ Σ𝐹▹𝐺
Γ ⊢ fst 𝑡 = fst 𝑢 ∶ 𝐹

Γ ⊢ 𝐹 Γ, 𝐹 ⊢ 𝐺 Γ ⊢ 𝑡 = 𝑢 ∶ Σ𝐹▹𝐺
Γ ⊢ snd 𝑡 = snd 𝑢 ∶ 𝐺[fst 𝑡]

Γ ⊢ 𝐹 Γ, 𝐹 ⊢ 𝐺 Γ ⊢ 𝑡 ∶ 𝐹 Γ ⊢ 𝑢 ∶ 𝐺[𝑡]
Γ ⊢ fst ⟨𝑡, 𝑢⟩ = 𝑡 ∶ 𝐹

Γ ⊢ 𝐹 Γ, 𝐹 ⊢ 𝐺 Γ ⊢ 𝑡 ∶ 𝐹 Γ ⊢ 𝑢 ∶ 𝐺[𝑡]
Γ ⊢ snd ⟨𝑡, 𝑢⟩ = 𝑢 ∶ 𝐺[fst ⟨𝑡, 𝑢⟩]

Γ ⊢ 𝐹 Γ, 𝐹 ⊢ 𝐺
Γ ⊢ 𝑡 ∶ Σ𝐹▹𝐺 Γ ⊢ 𝑢 ∶ Σ𝐹▹𝐺 Γ ⊢ fst 𝑡 = fst 𝑢 ∶ 𝐹 Γ ⊢ snd 𝑡 = snd 𝑢 ∶ 𝐺[fst 𝑡]

Γ ⊢ 𝑡 = 𝑢 ∶ Σ𝐹▹𝐺

The design of these rules follows principles laid out in the preceding discussion. The exten-
sionality principle looks at all observations we can make about a pair. It implies congruence of
the introduction form ⟨𝑡, 𝑢⟩, so we do not postulate it. On the other hand, we do need explicit
congruence at elimination forms. The rule for reduction of snd has a peculiar type arrived at
via typing the left-hand side.

Note also the following – every single rule has Γ ⊢ 𝐹 and Γ, 𝐹 ⊢ 𝐺, the propositions from
which Γ ⊢ Σ𝐹▹𝐺 follows, in its premises. Why is this? Recall the discussion from ch. 2.3 on
proving syntactic validity without semantics. This design choice is meant to achieve that on a
smaller scale –we don’t get validity for everything, but we get enough premises from inversion
to simplify some proofs. The downside is merely some syntactic noise which I maintain is
worth it for the extra workload it reduces.

Interestingly, we don’t add operational rules to generic equality (below) – they are going to be
admissible via the semantic argument. Consequently, we can view generic equality as closer
to algorithmic conversion.

Γ ⊢ 𝐹 Γ, 𝐹 ⊢ 𝐺
Γ ⊢ ̄𝑡 ∶ Σ𝐹▹𝐺 Γ ⊢ 𝑢̄ ∶ Σ𝐹▹𝐺 Γ ⊢ fst ̄𝑡 ≅ fst 𝑢̄ ∶ 𝐹 Γ ⊢ snd ̄𝑡 ≅ snd 𝑢̄ ∶ 𝐺[fst ̄𝑡]

Γ ⊢ 𝑡 ≅ 𝑢 ∶ Σ𝐹▹𝐺

Γ ⊢ 𝐹 Γ, 𝐹 ⊢ 𝐺 Γ ⊢ 𝑛 ∼ 𝑚 ∶ Σ𝐹▹𝐺
Γ ⊢ fst 𝑛 ∼ fst 𝑚 ∶ 𝐹

Γ ⊢ 𝐹 Γ, 𝐹 ⊢ 𝐺 Γ ⊢ 𝑛 ∼ 𝑚 ∶ Σ𝐹▹𝐺
Γ ⊢ snd 𝑛 ∼ snd 𝑚 ∶ 𝐺[fst 𝑛]
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Now for the semantics. At term level, the logical relations for Π and Σ are very different, so
split into type-specific definitions:
_⊩¹_∷_/_ : (Γ : Con Term) (t A : Term) → Γ ⊩¹ A → Set
Γ ⊩¹ t ∷ A / Bᵣ BΠ [A] = Γ ⊩¹Π t ∷ A / [A]
Γ ⊩¹ t ∷ A / Bᵣ BΣ [A] = Γ ⊩¹Σ t ∷ A / [A]
-- other cases

_⊩¹_≡_∷_/_ : (Γ : Con Term) (t u A : Term) → Γ ⊩¹ A → Set
Γ ⊩¹ t ≡ u ∷ A / Bᵣ BΠ [A] = Γ ⊩¹Π t ≡ u ∷ A / [A]
Γ ⊩¹ t ≡ u ∷ A / Bᵣ BΣ [A] = Γ ⊩¹Σ t ≡ u ∷ A / [A]
-- other cases

To rephrase the discussion from ch. 2 – in type-theoretic semantics of type theory, the object
modelling a type mirrors its structure. So we model dependent pairs by dependent pairs. The
Σ types are presented as negative [34] – reducibility of pairs specifies their meaning in terms
of their behaviour under elimination forms (projections).

While it might be possible to formulate something like Product-prop similar to Unit-propwhich
holds for reducibly neutral terms and for pairs of reducible terms, when attempting to do so
I was unable to convince Agda’s termination checker that the resulting part of the inductive-
recursive definition of logical relations was well-formed. Perhaps the lesson here is that neg-
ative formulations are simply preferrable for this form of metatheory.

Dependent pair reducibility (below) includes the usual layer of reduction to WHNF (Product
is a WHNFhood predicate for Σ) and generic reflexivity. We then construct a metatheoretic
dependent pair modelling the object theory pair:

• reducibility under fst at F

• reducibility under snd at G[ fst p ] given Γ ⊩ fst p ∷ F / [F], i.e. the first component

Like in the relation for 𝜆×, monotonicity isn’t built-in for these as the term-level rules for Σ
don’t involve binders.
_⊩¹Σ_∷_/_ : (Γ : Con Term) (t A : Term) ([A] : Γ ⊩¹B⟨ BΣ ⟩ A) → Set
Γ ⊩¹Σ t ∷ A / [A]@(Bᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) =

∃ λ p → Γ ⊢ t :⇒*: p ∷ Σ F ▹ G
× Product p
× Γ ⊢ p ≅ p ∷ Σ F ▹ G
-- Weakening by identity (a noop) is necessary for technical reasons.
× (Σ (Γ ⊩¹ fst p ∷ U.wk id F / [F] id (wf ⊢F)) λ [fst]

→ Γ ⊩¹ snd p ∷ U.wk (lift id) G [ fst p ] / [G] id (wf ⊢F) [fst])

Reducible term equality is similar and includes the expected logicality conditions. This relation
is somewhat excessive – it pulls in reducibility of t using Γ ⊩¹Σ t ∷ A / [A] and ditto for u. It
also postulates reducibility of both fst p and fst r to achieve symmetry by fiat. It could be
simplified, but the returns from each successive refactoring are increasingly diminishing.
_⊩¹Σ_≡_∷_/_ : (Γ : Con Term) (t u A : Term) ([A] : Γ ⊩¹B⟨ BΣ ⟩ A) → Set
Γ ⊩¹Σ t ≡ u ∷ A / [A]@(Bᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) =

∃₂ λ p r → Γ ⊢ t :⇒*: p ∷ Σ F ▹ G
× Γ ⊢ u :⇒*: r ∷ Σ F ▹ G
× Product p
× Product r
× Γ ⊢ p ≅ r ∷ Σ F ▹ G
× Γ ⊩¹Σ t ∷ A / [A]
× Γ ⊩¹Σ u ∷ A / [A]
× (Σ (Γ ⊩¹ fst p ∷ U.wk id F / [F] id (wf ⊢F)) λ [fstp]
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→ Γ ⊩¹ fst r ∷ U.wk id F / [F] id (wf ⊢F)
× Γ ⊩¹ fst p ≡ fst r ∷ U.wk id F / [F] id (wf ⊢F)
× Γ ⊩¹ snd p ≡ snd r ∷ U.wk (lift id) G [ fst p ] / [G] id (wf ⊢F) [fstp])

3.2.3 Fundamental theorem

Unfortunately reinforcing AÖV’s sentiment, the proof of the fundamental theorem is not in-
credibly illuminating. All interesting choices sit in the design of the relational semantics,
generic equality and the algorithm, while the present proof consists of large amounts of mostly
mechanical manipulations of terms under reduction, substitution and so on. The proof’s value
is dynamic – success or failure of carrying it through informs the design of the specifications.
In fact, this kind of trial-and-error is how I arrived at the correct definitions presented here
after a fair amount of iterations whose reasons for failure I try to synthesize as principles in
the preceding chapters.

3.2.4 Conversion

And finally, the conversion algorithm:

Γ ⊢ 𝑛 ⟷ 𝑚 ∶ Σ𝐹▹𝐺
Γ ⊢ fst 𝑛 ⟷̂ fst 𝑚 ∶ 𝐹

Γ ⊢ 𝑛 ⟷ 𝑚 ∶ Σ𝐹▹𝐺
Γ ⊢ snd 𝑛 ⟷̂ snd 𝑚 ∶ 𝐺[fst 𝑛]

Γ ⊢ 𝑝̄ ∶ Σ𝐹▹𝐺
Γ ⊢ 𝑟̄ ∶ Σ𝐹▹𝐺 Γ ⊢ fst 𝑝̄ ⟺̂ fst 𝑟̄ ∶ 𝐹 Γ ⊢ snd 𝑝̄ ⟺̂ snd 𝑟̄ ∶ 𝐺[fst 𝑝̄]

Γ ⊢ 𝑝̄ ⟺ 𝑟̄ ∶ Σ𝐹▹𝐺

The only weak-head conversion rule is extensionality. During neutral conversion, we inspect
pairs which projections are applied to. Eliminators are never in non-neutral WHNF, so they
do not have to be checked by ⟺ . Correspondingly, introduction forms are never neutral
so ⟷ does not need an extensionality rule.

This concludes the presentation.

4 Conclusions
I presented the extension of a practical type conversion algorithm for dependent type theory
by a contractible unit type and dependent sum types. Philosophical and practical aspects of
the theory, the algorithm, and their semantics were discussed, first on the example of simply-
typed lambda calculi and then the type theory proper. Decidability of conversion for the
extended theory using the algorithm has been formally proven in the Agda theorem prover
via an argument using Kripke logical relations.

4.1 Related work
The primary piece of literature to mention is of course the work of Abel, Öhman and Vezzosi
(AÖV) [8] on which this project is based. Their work, in turn, came from a line of research
going back to Coquand’s ’91 paper [18] and focusing on efficient weak-head conversion algo-
rithms. The closest one is probably that exhibited by Abel and Scherer [3] for a type theory
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with an irrelevance modality. Its authors had to use two logical relations which AÖV sub-
sequently merged into the generic one seen in ch. 3. Also important is a note due to Abel,
Coquand and Mannaa [7] introducing typed reduction. A slightly more distant relative due
to Harper and Pfenning [31] checks conversion in the LF logical framework but crucially re-
lies on the absence of large elimination resulting in an ability to erase type dependencies and
prove injectivity of Π-types early-on.

A related strand of work explores the use of Normalization by Evaluation (NbE) [15, 1] in type-
checking and conversion algorithms. Together with many collaborators, Abel investigates a
series of such algorithms. First with Aehlig and Dybjer [4] for a type theory with Π types,
one universe and an untyped notion of conversion. Then, with Coquand and Dybjer [5] for an
earlier version of 𝜆Π𝑈𝑁 , the type theory considered by AÖV which 𝜆Σ extends. Later, with
Coquand and Pagano [6] for types including proof-irrelevant propositions. To my best knowl-
edge the only work in this area which has been formalised, and even then only partially so, is
that of Altenkirch and Kaposi [10] on decidability of equality in a type theory without large
elimination. They use Agda for the mechanisation as done here. Recently, Gratzer, Sterling
and Birkedal [28] presented a type checking algorithm for a type theory including a neces-
sity modality and close in many respects to 𝜆Σ. Being NbE-based, their algorithm is a very
interesting point of comparison in the design space.

4.2 Future work
The obvious direction for future work is to carry on, attempting to exhibit and verify a weak-
head conversion procedure for extensional identity types, be they in OTT form [13], XTT form
[44] or perhaps taken from the recent setoid type theory of Altenkirch and collaborators [14].
But with experience gained from this project, the predicted workload is absolutely massive.
Even without mechanisation, paper proofs could reasonably reach a hundred pages or more.
Can we do better? In informal communication and certain literature (e.g. Gratzer et al. [28]),
members of the community hint at the categorical viewpoint as something to investigate in
search for better proof methods. With sufficient squinting, rather general structure can be
seen to emerge from proofs by logical relation. The methods of categorical gluing and seman-
tic normalization are one way to codify this intuition. Papers to look at in this area include
the work of Altenkirch, Hofmann and Streicher [12] and of Fiore [24] on normalization of the
simply-typed lambda calculus. The work of Altenkirch and Kaposi [10] also employs categori-
cal methods to some extent. Coquand [19] presents a proof sketch for normalization in a type
theory with a cumulative universe hierarchy. Gluing in particular is discussed in the work of
Sterling and Spitters [42] as well as Sterling [40]. The general semantic framework of Uemura
[46] can be hoped to unify many of these results. Lastly, Brunerie [16] has been working on a
(to my best knowledge unpublished) formalised proof of the initiality conjecture.

5 Appendix A
The type theory 𝜆Σ, its weak-head operational semantics, as well as the type and term con-
version algorithm for it, are fully defined below. Black text represents rules due to AÖV [8],
which are reproduced from their work with small modifications. Blue text represents rules for
the empty type added by Gaëtan Gilbert in a GitHub pull request [26]. To my best knowledge
this has not been written up outside of Agda code. Finally, red text represents rules added by
me in the present work. Taken together, coloured annotations visualize contributions of other
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people to, and the expansion of, the proof since published by AÖV.

5.1 Grammar

ℕ ∋ 𝑥
Exp ∋ 𝑡, 𝑢, 𝑣, 𝐴, 𝐵 ∶∶= ̄𝑡 | 𝑡 𝑢 | fst 𝑡 | snd 𝑡 | natrec 𝐴 𝑡 𝑢 𝑣 | Emptyrec 𝐴 𝑡
Whnf ∋ ̄𝑡 ∶∶= 𝑛 | 𝜆𝑡 | ⟨𝑡, 𝑢⟩ | zero | suc 𝑡 | ∗ |

𝑈 | Π𝐴▹𝐵 | Σ𝐴▹𝐵 | ℕ | 𝟙 | 𝟘
Ne ∋ 𝑛,𝑚,𝑁,𝑀 ∶∶= 𝑖𝑥 | 𝑛 𝑡 | fst 𝑛 | snd 𝑛 | natrec 𝐴 𝑡 𝑢 𝑛 | Emptyrec 𝐴 𝑛
Cxt ∋ Γ, Δ ∶∶= 𝜀 | Γ, 𝐴
Wk ∋ 𝜌 ∶∶= id | ↑ 𝜌 | ⇑ 𝜌 | 𝜌 ∘ 𝜌′
Subst ∋ 𝜎 ∶∶= 𝜌 | ↑ 𝜎 | ⇑ 𝜎 | 𝜎 ∘ 𝜎′ | 𝜎, 𝑡

Figure 5.1: Grammar of 𝜆Σ

5.2 Terms and types

Well-formedness of types Γ ⊢ 𝐴

Γ ⊢ 𝐹 Γ, 𝐹 ⊢ 𝐺
Γ ⊢ 𝔅𝐹▹𝐺 (for 𝔅 = Π,Σ)

⊢ Γ
Γ ⊢ 𝐴 (for 𝐴 = 𝑈,ℕ, 𝟙, 𝟘)

Γ ⊢ 𝐴 ∶ 𝑈
Γ ⊢ 𝐴

Equality of types Γ ⊢ 𝐴 = 𝐵

Γ ⊢ 𝐴
Γ ⊢ 𝐴 = 𝐴

Γ ⊢ 𝐴 = 𝐵
Γ ⊢ 𝐵 = 𝐴

Γ ⊢ 𝐴 = 𝐵 Γ ⊢ 𝐵 = 𝐶
Γ ⊢ 𝐴 = 𝐶

Γ ⊢ 𝐹 Γ ⊢ 𝐹 = 𝐻 Γ, 𝐹 ⊢ 𝐺 = 𝐸
Γ ⊢ 𝔅𝐹▹𝐺 = 𝔅𝐻▹𝐸 (for 𝔅 = Π,Σ)

Γ ⊢ 𝐴 = 𝐵 ∶ 𝑈
Γ ⊢ 𝐴 = 𝐵
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Well-formedness of terms Γ ⊢ 𝑡 ∶ 𝐴

⊢ Γ
Γ ⊢ 𝐴 ∶ 𝑈 (for 𝐴 = ℕ,𝟙, 𝟘)

Γ ⊢ 𝐹 ∶ 𝑈 Γ, 𝐹 ⊢ 𝐺 ∶ 𝑈
Γ ⊢ 𝔅𝐹▹𝐺 ∶ 𝑈 (for 𝔅 = Π,Σ)

⊢ Γ 𝑖 ∶ 𝐴 ∈ Γ
Γ ⊢ 𝑖 ∶ 𝐴

Γ ⊢ 𝐹 Γ, 𝐹 ⊢ 𝑡 ∶ 𝐺
Γ ⊢ 𝜆𝑡 ∶ Π𝐹▹𝐺

Γ ⊢ 𝑔 ∶ Π𝐹▹𝐺 Γ ⊢ 𝑎 ∶ 𝐹
Γ ⊢ 𝑔 𝑎 ∶ 𝐺[𝑎]

Γ ⊢ 𝐹 Γ, 𝐹 ⊢ 𝐺 Γ ⊢ 𝑡 ∶ 𝐹 Γ ⊢ 𝑢 ∶ 𝐺[𝑡]
Γ ⊢ ⟨𝑡, 𝑢⟩ ∶ Σ𝐹▹𝐺

Γ ⊢ 𝐹 Γ, 𝐹 ⊢ 𝐺 Γ ⊢ 𝑝 ∶ Σ𝐹▹𝐺
Γ ⊢ fst 𝑝 ∶ 𝐹

Γ ⊢ 𝐹 Γ, 𝐹 ⊢ 𝐺 Γ ⊢ 𝑝 ∶ Σ𝐹▹𝐺
Γ ⊢ snd 𝑝 ∶ 𝐺[fst 𝑝]

⊢ Γ
Γ ⊢ zero ∶ ℕ

Γ ⊢ 𝑡 ∶ ℕ
Γ ⊢ suc 𝑡 ∶ ℕ

Γ,ℕ ⊢ 𝐺 Γ ⊢ 𝑧 ∶ 𝐺[zero] Γ ⊢ 𝑠 ∶ Πℕ▹(𝐺 → 𝐺[↑ id, suc 𝑖0]) Γ ⊢ 𝑡 ∶ ℕ
Γ ⊢ natrec 𝐺 𝑧 𝑠 𝑡 ∶ 𝐺[𝑡]

Γ ⊢ 𝐴 Γ ⊢ 𝑡 ∶ 𝟘
Γ ⊢ Emptyrec 𝐴 𝑡 ∶ 𝐴

⊢ Γ
Γ ⊢ ∗ ∶ 𝟙

Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝐴 = 𝐵
Γ ⊢ 𝑡 ∶ 𝐵
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Equality of terms Γ ⊢ 𝑡 = 𝑢 ∶ 𝐴

Γ ⊢ 𝑡 ∶ 𝐴
Γ ⊢ 𝑡 = 𝑡 ∶ 𝐴

Γ ⊢ 𝑡 = 𝑢 ∶ 𝐴
Γ ⊢ 𝑢 = 𝑡 ∶ 𝐴

Γ ⊢ 𝑡1 = 𝑡2 ∶ 𝐴 Γ ⊢ 𝑡2 = 𝑡3 ∶ 𝐴
Γ ⊢ 𝑡1 = 𝑡3 ∶ 𝐴

Γ ⊢ 𝑡 = 𝑢 ∶ 𝐴 Γ ⊢ 𝐴 = 𝐵
Γ ⊢ 𝑡 = 𝑢 ∶ 𝐵

Γ ⊢ 𝐹 Γ ⊢ 𝐹 = 𝐻 ∶ 𝑈 Γ, 𝐹 ⊢ 𝐺 = 𝐸 ∶ 𝑈
Γ ⊢ 𝔅𝐹▹𝐺 = 𝔅𝐻▹𝐸 ∶ 𝑈 (for 𝔅 = Π,Σ)

Γ ⊢ 𝑓 = 𝑔 ∶ Π𝐹▹𝐺 Γ ⊢ 𝑎 = 𝑏 ∶ 𝐹
Γ ⊢ 𝑓 𝑎 = 𝑔 𝑏 ∶ 𝐺[𝑎]

Γ ⊢ 𝐹 Γ, 𝐹 ⊢ 𝑡 ∶ 𝐺 Γ ⊢ 𝑎 ∶ 𝐹
Γ ⊢ (𝜆𝑡) 𝑎 = 𝑡[𝑎] ∶ 𝐺[𝑎]

Γ ⊢ 𝑓 ∶ Π𝐹▹𝐺 Γ ⊢ 𝑔 ∶ Π𝐹▹𝐺 Γ, 𝐹 ⊢ 𝑓[↑ id] 𝑖0 = 𝑔[↑ id] 𝑖0 ∶ 𝐺
Γ ⊢ 𝑓 = 𝑔 ∶ Π𝐹▹𝐺

Γ ⊢ 𝐹 Γ, 𝐹 ⊢ 𝐺 Γ ⊢ 𝑡 = 𝑢 ∶ Σ𝐹▹𝐺
Γ ⊢ fst 𝑡 = fst 𝑢 ∶ 𝐹

Γ ⊢ 𝐹 Γ, 𝐹 ⊢ 𝐺 Γ ⊢ 𝑡 = 𝑢 ∶ Σ𝐹▹𝐺
Γ ⊢ snd 𝑡 = snd 𝑢 ∶ 𝐺[fst 𝑡]

Γ ⊢ 𝐹 Γ, 𝐹 ⊢ 𝐺 Γ ⊢ 𝑡 ∶ 𝐹 Γ ⊢ 𝑢 ∶ 𝐺[𝑡]
Γ ⊢ fst ⟨𝑡, 𝑢⟩ = 𝑡 ∶ 𝐹

Γ ⊢ 𝐹 Γ, 𝐹 ⊢ 𝐺 Γ ⊢ 𝑡 ∶ 𝐹 Γ ⊢ 𝑢 ∶ 𝐺[𝑡]
Γ ⊢ snd ⟨𝑡, 𝑢⟩ = 𝑢 ∶ 𝐺[fst ⟨𝑡, 𝑢⟩]

Γ ⊢ 𝐹 Γ, 𝐹 ⊢ 𝐺
Γ ⊢ 𝑡 ∶ Σ𝐹▹𝐺 Γ ⊢ 𝑢 ∶ Σ𝐹▹𝐺 Γ ⊢ fst 𝑡 = fst 𝑢 ∶ 𝐹 Γ ⊢ snd 𝑡 = snd 𝑢 ∶ 𝐺[fst 𝑡]

Γ ⊢ 𝑡 = 𝑢 ∶ Σ𝐹▹𝐺

Γ ⊢ 𝑡 = 𝑢 ∶ ℕ
Γ ⊢ suc 𝑡 = suc 𝑢 ∶ ℕ

Γ,ℕ ⊢ 𝐺1 = 𝐺2
Γ ⊢ 𝑧1 = 𝑧2 ∶ 𝐺1[zero] Γ ⊢ 𝑠1 = 𝑠2 ∶ Πℕ▹(𝐺1 → 𝐺1[↑ id, suc 𝑖0]) Γ ⊢ 𝑡1 = 𝑡2 ∶ ℕ

Γ ⊢ natrec 𝐺1 𝑧1 𝑠1 𝑡1 = natrec 𝐺2 𝑧2 𝑠2 𝑡2 ∶ 𝐺1[𝑡1]

Γ,ℕ ⊢ 𝐺 Γ ⊢ 𝑧 ∶ 𝐺[zero] Γ ⊢ 𝑠 ∶ Πℕ▹(𝐺 → 𝐺[↑ id, suc 𝑖0])
Γ ⊢ natrec 𝐺 𝑧 𝑠 zero = 𝑧 ∶ 𝐺[zero]

Γ,ℕ ⊢ 𝐺 Γ ⊢ 𝑧 ∶ 𝐺[zero] Γ ⊢ 𝑠 ∶ Πℕ▹(𝐺 → 𝐺[↑ id, suc 𝑖0]) Γ ⊢ 𝑡 ∶ ℕ
Γ ⊢ natrec 𝐺 𝑧 𝑠 (suc 𝑡) = (𝑠 𝑡) (natrec 𝐺 𝑧 𝑠 𝑡) ∶ 𝐺[suc 𝑡]

Γ ⊢ 𝐴 = 𝐵 Γ ⊢ 𝑡 = 𝑢 ∶ 𝟙
Γ ⊢ Emptyrec 𝐴 𝑡 = Emptyrec 𝐵 𝑢 ∶ 𝐴

Γ ⊢ 𝑡 ∶ 𝟙 Γ ⊢ 𝑢 ∶ 𝟙
Γ ⊢ 𝑡 = 𝑢 ∶ 𝟙
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5.3 Operational semantics

Weak-head reduction Γ ⊢ 𝐴 ⟶ 𝐵 and Γ ⊢ 𝑡 ⟶ 𝑢 ∶ 𝐴

Γ ⊢ 𝐴 ⟶ 𝐵 ∶ 𝑈
Γ ⊢ 𝐴 ⟶ 𝐵

Γ ⊢ 𝑡 ⟶ 𝑢 ∶ 𝐴 Γ ⊢ 𝐴 = 𝐵
Γ ⊢ 𝑡 ⟶ 𝑢 ∶ 𝐵

Γ ⊢ 𝑓 ⟶ 𝑔 ∶ Π𝐹▹𝐺 Γ ⊢ 𝑎 ∶ 𝐹
Γ ⊢ 𝑓 𝑎 ⟶ 𝑔 𝑎 ∶ 𝐺[𝑎]

Γ ⊢ 𝐹 Γ, 𝐹 ⊢ 𝑡 ∶ 𝐺 Γ ⊢ 𝑎 ∶ 𝐹
Γ ⊢ (𝜆𝑡) 𝑎 ⟶ 𝑡[𝑎] ∶ 𝐺[𝑎]

Γ ⊢ 𝐹 Γ, 𝐹 ⊢ 𝐺 Γ ⊢ 𝑡 ⟶ 𝑢 ∶ Σ𝐹▹𝐺
Γ ⊢ fst 𝑡 ⟶ fst 𝑢 ∶ 𝐹

Γ ⊢ 𝐹 Γ, 𝐹 ⊢ 𝐺 Γ ⊢ 𝑡 ⟶ 𝑢 ∶ Σ𝐹▹𝐺
Γ ⊢ snd 𝑡 ⟶ snd 𝑢 ∶ 𝐺[fst 𝑡]

Γ ⊢ 𝐹 Γ, 𝐹 ⊢ 𝐺 Γ ⊢ 𝑡 ∶ 𝐹 Γ ⊢ 𝑢 ∶ 𝐺[𝑡]
Γ ⊢ fst ⟨𝑡, 𝑢⟩ ⟶ 𝑡 ∶ 𝐹

Γ ⊢ 𝐹 Γ, 𝐹 ⊢ 𝐺 Γ ⊢ 𝑡 ∶ 𝐹 Γ ⊢ 𝑢 ∶ 𝐺[𝑡]
Γ ⊢ snd ⟨𝑡, 𝑢⟩ ⟶ 𝑢 ∶ 𝐺[fst ⟨𝑡, 𝑢⟩]

Γ,ℕ ⊢ 𝐺 Γ ⊢ 𝑧 ∶ 𝐺[zero] Γ ⊢ 𝑠 ∶ Πℕ▹(𝐺 → 𝐺[↑ id, suc 𝑖0]) Γ ⊢ 𝑡 ⟶ 𝑢 ∶ ℕ
Γ ⊢ natrec 𝐺 𝑧 𝑠 𝑡 ⟶ natrec 𝐺 𝑧 𝑠 𝑢 ∶ 𝐺[𝑡]

Γ,ℕ ⊢ 𝐺 Γ ⊢ 𝑧 ∶ 𝐺[zero] Γ ⊢ 𝑠 ∶ Πℕ▹(𝐺 → 𝐺[↑ id, suc 𝑖0])
Γ ⊢ natrec 𝐺 𝑧 𝑠 zero ⟶ 𝑧 ∶ 𝐺[zero]

Γ,ℕ ⊢ 𝐺 Γ ⊢ 𝑧 ∶ 𝐺[zero] Γ ⊢ 𝑠 ∶ Πℕ▹(𝐺 → 𝐺[↑ id, suc 𝑖0]) Γ ⊢ 𝑡 ∶ ℕ
Γ ⊢ natrec 𝐺 𝑧 𝑠 (suc 𝑡) ⟶ (𝑠 𝑡) (natrec 𝐺 𝑧 𝑠 𝑡) ∶ 𝐺[suc 𝑡]

Γ ⊢ 𝐴 Γ ⊢ 𝑡 ⟶ 𝑢 ∶ 𝟘
Γ ⊢ Emptyrec 𝐴 𝑡 ⟶ Emptyrec 𝐴 𝑢 ∶ 𝐴
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5.4 Type conversion algorithm

Conversion of neutral terms Γ ⊢ 𝑛 ⟷ 𝑚 ∶ 𝐴̄

Γ ⊢ 𝐴 ⟶∗ 𝐴̄ Γ ⊢ 𝑛 ⟺̂ 𝑚 ∶ 𝐴
Γ ⊢ 𝑛 ⟷ 𝑚 ∶ 𝐴̄

Γ ⊢ 𝑖𝑥 ∶ 𝐴 𝑥 ≡ 𝑦
Γ ⊢ 𝑖𝑥 ⟷̂ 𝑖𝑦 ∶ 𝐴

Γ ⊢ 𝑛 ⟷ 𝑚 ∶ Π𝐹▹𝐺 Γ ⊢ 𝑡 ⟺̂ 𝑢 ∶ 𝐹
Γ ⊢ 𝑛 𝑡 ⟷̂ 𝑚 𝑢 ∶ 𝐺[𝑡]

Γ ⊢ 𝑛 ⟷ 𝑚 ∶ Σ𝐹▹𝐺
Γ ⊢ fst 𝑛 ⟷̂ fst 𝑚 ∶ 𝐹

Γ ⊢ 𝑛 ⟷ 𝑚 ∶ Σ𝐹▹𝐺
Γ ⊢ snd 𝑛 ⟷̂ snd 𝑚 ∶ 𝐺[fst 𝑛]

Γ,ℕ ⊢ 𝐹 ⟺̂ 𝐺
Γ ⊢ 𝑧 ⟺̂ 𝑧′ ∶ 𝐹[zero] Γ ⊢ 𝑠 ⟺̂ 𝑠′ ∶ Πℕ▹(𝐹 → 𝐹[↑ id, suc 𝑖0]) Γ ⊢ 𝑛 ⟷ 𝑚 ∶ ℕ

Γ ⊢ natrec 𝐹 𝑧 𝑠 𝑛 ⟷̂ natrec 𝐺 𝑧′ 𝑠′ 𝑚 ∶ 𝐹[𝑛]

Γ ⊢ 𝐹 ⟺̂ 𝐺 Γ ⊢ 𝑛 ⟷ 𝑚 ∶ 𝟘
Γ ⊢ Emptyrec 𝐹 𝑛 ⟷̂ Emptyrec 𝐺 𝑚 ∶ 𝐹

Conversion of types Γ ⊢ 𝐴̄ ⟺ 𝐵̄

Γ ⊢ 𝐴 ⟶∗ 𝐴̄ Γ ⊢ 𝐵 ⟶∗ 𝐵̄ Γ ⊢ 𝐴̄ ⟺ 𝐵̄
Γ ⊢ 𝐴 ⟺̂ 𝐵

Γ ⊢ 𝑁 ⟷ 𝑀 ∶ 𝑈
Γ ⊢ 𝑁 ⟺ 𝑀

⊢ Γ
Γ ⊢ 𝐴̄ ⟺ 𝐴̄ (for 𝐴̄ = 𝑈,ℕ, 𝟙, 𝟘)

Γ ⊢ 𝐹 ⟺̂ 𝐻 Γ, 𝐹 ⊢ 𝐺 ⟺̂ 𝐸
Γ ⊢ 𝔅𝐹▹𝐺 ⟺ 𝔅𝐻▹𝐸 (for 𝔅 = Π,Σ)
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Conversion of terms Γ ⊢ ̄𝑡 ⟺ 𝑢̄ ∶ 𝐴̄

Γ ⊢ 𝐴 ⟶∗ 𝐴̄ Γ ⊢ 𝑡 ⟶∗ ̄𝑡 ∶ 𝐴̄ Γ ⊢ 𝑢 ⟶∗ 𝑢̄ ∶ 𝐴̄ Γ ⊢ ̄𝑡 ⟺ 𝑢̄ ∶ 𝐴̄
Γ ⊢ 𝑡 ⟺̂ 𝑢 ∶ 𝐴

Γ ⊢ 𝑛 ⟷ 𝑚 ∶ 𝐴̄
Γ ⊢ 𝑛 ⟺ 𝑚 ∶ 𝐴̄ (for 𝐴̄ = ℕ, 𝟙, 𝟘)

Γ ⊢ 𝑛 ∶ 𝐴̄ Γ ⊢ 𝑚 ∶ 𝐴̄ Γ ⊢ 𝑛 ⟷ 𝑚 ∶ 𝐵̄
Γ ⊢ 𝑛 ⟺ 𝑚 ∶ 𝐴̄

Γ ⊢ 𝐴̄ ∶ 𝑈 Γ ⊢ 𝐵̄ ∶ 𝑈 Γ ⊢ 𝐴̄ ⟺ 𝐵̄
Γ ⊢ 𝐴̄ ⟺ 𝐵̄ ∶ 𝑈

Γ ⊢ ̄𝑓 ∶ Π𝐹▹𝐺 Γ ⊢ 𝑔̄ ∶ Π𝐹▹𝐺 Γ, 𝐹 ⊢ ̄𝑓[↑ id] 𝑖0 ⟺̂ 𝑔̄[↑ id] 𝑖0 ∶ 𝐺
Γ ⊢ ̄𝑓 ⟺ 𝑔̄ ∶ Π𝐹▹𝐺

Γ ⊢ 𝑝̄ ∶ Σ𝐹▹𝐺
Γ ⊢ 𝑟̄ ∶ Σ𝐹▹𝐺 Γ ⊢ fst 𝑝̄ ⟺̂ fst 𝑟̄ ∶ 𝐹 Γ ⊢ snd 𝑝̄ ⟺̂ snd 𝑟̄ ∶ 𝐺[fst 𝑝̄]

Γ ⊢ 𝑝̄ ⟺ 𝑟̄ ∶ Σ𝐹▹𝐺

⊢ Γ
Γ ⊢ zero ⟺ zero ∶ ℕ

Γ ⊢ 𝑡 ⟺̂ 𝑢 ∶ ℕ
Γ ⊢ suc 𝑡 ⟺ suc 𝑢 ∶ ℕ

Γ ⊢ ̄𝑡 ∶ 𝟙 Γ ⊢ 𝑢̄ ∶ 𝟙
Γ ⊢ ̄𝑡 ⟺ 𝑢̄ ∶ 𝟙

5.5 Generic equality

Generic type equality Γ ⊢ 𝐴 ≅ 𝐵

Γ ⊢ 𝐴 ≅ 𝐵
Γ ⊢ 𝐴 ≡ 𝐵

Γ ⊢ 𝐴 ≅ 𝐵 ∶ 𝑈
Γ ⊢ 𝐴 ≅ 𝐵

Γ ⊢ 𝐴 ≅ 𝐵
Γ ⊢ 𝐵 ≅ 𝐴

Γ ⊢ 𝐴 ≅ 𝐵 Γ ⊢ 𝐵 ≅ 𝐶
Γ ⊢ 𝐴 ≅ 𝐶

⊢ Δ 𝜌 ∶ Δ ≤ Γ Γ ⊢ 𝐴 ≅ 𝐵
Δ ⊢ 𝐴[𝜌] ≅ 𝐵[𝜌]

Γ ⊢ 𝐴 ⟶∗ 𝐴̄ Γ ⊢ 𝐵 ⟶∗ 𝐵̄ Γ ⊢ 𝐴̄ ≅ 𝐵̄
Γ ⊢ 𝐴 ≅ 𝐵

⊢ Γ
Γ ⊢ 𝐴 ≅ 𝐴 (for 𝐴 = 𝑈,ℕ, 𝟙, 𝟘)

Γ ⊢ 𝐹 Γ ⊢ 𝐹 ≅ 𝐻 Γ, 𝐹 ⊢ 𝐺 ≅ 𝐸
Γ ⊢ 𝔅𝐹▹𝐺 ≅ 𝔅𝐺▹𝐸 (for 𝔅 = Π,Σ)
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Generic term equality Γ ⊢ 𝑡 ≅ 𝑢 ∶ 𝐴

Γ ⊢ 𝑡 ∼ 𝑢 ∶ 𝐴
Γ ⊢ 𝑡 ≅ 𝑢 ∶ 𝐴

Γ ⊢ 𝑡 ≅ 𝑢 ∶ 𝐴
Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴

Γ ⊢ 𝑡 ≅ 𝑢 ∶ 𝐴
Γ ⊢ 𝑢 ≅ 𝑡 ∶ 𝐴

Γ ⊢ 𝑡 ≅ 𝑢 ∶ 𝐴 Γ ⊢ 𝑢 ≅ 𝑣 ∶ 𝐴
Γ ⊢ 𝑡 ≅ 𝑣 ∶ 𝐴

Γ ⊢ 𝑡 ≅ 𝑢 ∶ 𝐴 Γ ⊢ 𝐴 ≡ 𝐵
Γ ⊢ 𝑡 ≅ 𝑢 ∶ 𝐵

⊢ Δ 𝜌 ∶ Δ ≤ Γ Γ ⊢ 𝑡 ≅ 𝑢 ∶ 𝐴
Δ ⊢ 𝑡[𝜌] ≅ 𝑢[𝜌] ∶ 𝐴[𝜌]

Γ ⊢ 𝐴 ⟶∗ 𝐴̄ Γ ⊢ 𝑡 ⟶∗ ̄𝑡 ∶ 𝐴̄ Γ ⊢ 𝑢 ⟶∗ 𝑢̄ ∶ 𝐴̄ Γ ⊢ ̄𝑡 ≅ 𝑢̄ ∶ 𝐴̄
Γ ⊢ 𝑡 ≅ 𝑢 ∶ 𝐴

⊢ Γ
Γ ⊢ 𝐴 ≅ 𝐴 ∶ 𝑈 (for 𝐴 = ℕ,𝟙, 𝟘)

Γ ⊢ 𝐹 Γ ⊢ 𝐹 ≅ 𝐻 ∶ 𝑈 Γ, 𝐹 ⊢ 𝐺 ≅ 𝐸 ∶ 𝑈
Γ ⊢ 𝔅𝐹▹𝐺 ≅ 𝔅𝐺▹𝐸 ∶ 𝑈 (for 𝔅 = Π,Σ)

Γ ⊢ 𝐹 Γ ⊢ ̄𝑓 ∶ Π𝐹▹𝐺 Γ ⊢ 𝑔̄ ∶ Π𝐹▹𝐺 Γ, 𝐹 ⊢ ̄𝑓[↑ id] 𝑖0 ≅ 𝑔̄[↑ id] 𝑖0 ∶ 𝐺
Γ ⊢ 𝑓 ≅ 𝑔 ∶ Π𝐹▹𝐺

Γ ⊢ 𝐹 Γ, 𝐹 ⊢ 𝐺
Γ ⊢ ̄𝑡 ∶ Σ𝐹▹𝐺 Γ ⊢ 𝑢̄ ∶ Σ𝐹▹𝐺 Γ ⊢ fst ̄𝑡 ≅ fst 𝑢̄ ∶ 𝐹 Γ ⊢ snd ̄𝑡 ≅ snd 𝑢̄ ∶ 𝐺[fst ̄𝑡]

Γ ⊢ 𝑡 ≅ 𝑢 ∶ Σ𝐹▹𝐺

⊢ Γ
Γ ⊢ zero ≅ zero ∶ ℕ

Γ ⊢ 𝑡 ≅ 𝑢 ∶ ℕ
Γ ⊢ suc 𝑡 ≅ suc 𝑢 ∶ ℕ

Γ ⊢ 𝑡 ∶ 𝟙 Γ ⊢ 𝑢 ∶ 𝟙
Γ ⊢ 𝑡 ≅ 𝑢 ∶ 𝟙
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Generic neutral term equality Γ ⊢ 𝑛 ∼ 𝑚 ∶ 𝐴

Γ ⊢ 𝑛 ∼ 𝑚 ∶ 𝐴
Γ ⊢ 𝑚 ∼ 𝑛 ∶ 𝐴

Γ ⊢ 𝑛 ∼ 𝑚 ∶ 𝐴 Γ ⊢ 𝑚 ∼ 𝑘 ∶ 𝐴
Γ ⊢ 𝑛 ∼ 𝑘 ∶ 𝐴

Γ ⊢ 𝑛 ∼ 𝑚 ∶ 𝐴 Γ ⊢ 𝐴 ≡ 𝐵
Γ ⊢ 𝑛 ∼ 𝑚 ∶ 𝐵

⊢ Δ 𝜌 ∶ Δ ≤ Γ Γ ⊢ 𝑛 ∼ 𝑚 ∶ 𝐴
Δ ⊢ 𝑛[𝜌] ∼ 𝑚[𝜌] ∶ 𝐴[𝜌]

Γ ⊢ 𝑥 ∶ 𝐴
Γ ⊢ 𝑥 ∼ 𝑥 ∶ 𝐴

Γ ⊢ 𝑛 ∼ 𝑚 ∶ Π𝐹▹𝐺 Γ ⊢ 𝑡 ≅ 𝑢 ∶ 𝐹
Γ ⊢ 𝑛 𝑡 ∼ 𝑚 𝑢 ∶ 𝐺[𝑡]

Γ ⊢ 𝐹 Γ, 𝐹 ⊢ 𝐺 Γ ⊢ 𝑛 ∼ 𝑚 ∶ Σ𝐹▹𝐺
Γ ⊢ fst 𝑛 ∼ fst 𝑚 ∶ 𝐹

Γ ⊢ 𝐹 Γ, 𝐹 ⊢ 𝐺 Γ ⊢ 𝑛 ∼ 𝑚 ∶ Σ𝐹▹𝐺
Γ ⊢ snd 𝑛 ∼ snd 𝑚 ∶ 𝐺[fst 𝑛]

Γ,ℕ ⊢ 𝐹 ≅ 𝐹′
Γ ⊢ 𝑧 ≅ 𝑧′ ∶ 𝐹[zero] Γ ⊢ 𝑠 ≅ 𝑠′ ∶ Πℕ▹(𝐹 → 𝐹[↑ id, suc 𝑖0]) Γ ⊢ 𝑛 ∼ 𝑛′ ∶ ℕ

Γ ⊢ natrec 𝐹 𝑧 𝑠 𝑛 ∼ natrec 𝐹′ 𝑧′ 𝑠′ 𝑛′ ∶ 𝐹[𝑛]

Γ ⊢ 𝐹 ≅ 𝐺 Γ ⊢ 𝑛 ∼ 𝑚 ∶ 𝟘
Γ ⊢ Emptyrec 𝐹 𝑛 ∼ Emptyrec 𝐺 𝑚 ∶ 𝐹
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